Skip to main content
Log in

Thyroid hormone activates Wnt/β-catenin signaling involved in adult epithelial development during intestinal remodeling in Xenopus laevis

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

During amphibian intestinal remodeling, thyroid hormone (TH) induces some larval epithelial cells to dedifferentiate into adult stem cells, which newly generate the absorptive epithelium analogous to the mammalian epithelium. To clarify molecular mechanisms underlying adult epithelial development, we here focus on TH response genes that are associated with the canonical Wnt pathway. Our quantitative reverse transcription plus polymerase chain reaction and immunohistochemical analyses indicate that all of the genes examined, including β-catenin, c-Myc and secreted frizzle-related protein 2 (SFRP2), are up-regulated in Xenopus laevis intestine during both natural and TH-induced metamorphosis. Moreover, immunoreactivity for nuclear β-catenin becomes detectable in adult stem cells from the start of their appearance and then increases in intensity in adult epithelial primordia derived from the stem cells, which actively proliferate and coexpress Wnt target genes c-Myc and LGR5. These expression profiles strongly suggest the involvement of the canonical Wnt pathway in the maintenance and/or proliferation of adult stem/progenitor cells. More importantly, by using organ cultures of the tadpole intestine, we have experimentally shown that the addition of exogenous SFRP2 protein to the culture medium promotes cell proliferation of the adult epithelial primordia, whereas inhibition of endogenous SFRP2 by its antibody suppresses their proliferation. The inhibition of SFRP2 suppresses larval epithelial changes in shape from simple columnar to stem-cell-like roundish cells, resulting in the failure of epithelial dedifferentiation. Thus, TH-up-regulated SFRP2 in the postembryonic intestine promotes adult stem cell development, possibly by acting as an agonist of both canonical and non-canonical Wnt signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barker N, Tan S, Clevers H (2013) Lgr proteins in epithelial stem cell biology. Development 140:2484–2494

    Article  CAS  PubMed  Google Scholar 

  • Behrens J, Lustig B (2004) The Wnt connection to tumorigenesis. Int J Dev Biol 48:477–487

    Article  CAS  PubMed  Google Scholar 

  • Bjerknes M, Cheng H (1981) The stem-cell zone of the small intestinal epithelium. III. Evidence from columnar, enteroendocrine, and mucous cells in the adult mouse. Am J Anat 160:77–91

    Article  CAS  PubMed  Google Scholar 

  • Bovolenta P, Esteve P, Ruiz JM, Cisneros E, Lopez-Rios J (2008) Beyond Wnt inhibition: new functions of secreted frizzled-related proteins in development and disease. J Cell Sci 121:737–746

    Article  CAS  PubMed  Google Scholar 

  • Brown AR, Simmen RC, Simmen FA (2013) The role of thyroid hormone signaling in the prevention of digestive system cancers. Int J Mol Sci 14:16240–16257

    Article  PubMed  PubMed Central  Google Scholar 

  • Buchholz DR, Heimeier RA, Das B, Washington T, Shi Y-B (2007) Pairing morphology with gene expression in thyroid hormone-induced intestinal remodeling and identification of a core set of TH-induced genes across tadpole tissues. Dev Biol 303:576–590

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Bjerknes M (1985) Whole population cell kinetics and postnatal development of the mouse intestinal epithelium. Anat Rec 211:420–426

    Article  CAS  PubMed  Google Scholar 

  • Chien AJ, Conrad WH, Moon RT (2009) A Wnt survival guide: from flies to human disease. J Invest Dermatol 129:1614–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clevers H, Nusse R (2012) Wnt/β-catenin signaling and disease. Cell 149:1192–1205

    Article  CAS  PubMed  Google Scholar 

  • Clevers H, Loh KM, Nusse R (2014) Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346:1248012

    Article  PubMed  Google Scholar 

  • Courtwright A, Siamakpour-Reihani S, Arbiser JL, Banet N, Hilliard E, Fried L, Livasy C, Ketelsen D, Nepal DB, Perou CM, Patterson C, Klauber-Demore N (2009) Secreted frizzle-related protein 2 stimulates angiogenesis via a calcineurin/ NFAT signaling pathway. Cancer Res 69:4621–4628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crosnier C, Stamataki D, Lewis J (2006) Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet 7:349–359

    Article  CAS  PubMed  Google Scholar 

  • Dodd MHI, Dodd JM (1976) The biology of metamorphosis. In: Lofts B (ed) Physiology of the amphibia. Academic Press, New York, pp 467–599

    Chapter  Google Scholar 

  • Fevr T, Robine S, Louvard D, Huelsken J (2007) Wnt/β-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol Cell Biol 27:7551–7559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flanagan DJ, Phesse TJ, Barker N, Schwab RH, Amin N, Malaterre J, Stange DE, Nowell CJ, Currie SA, Saw JT, Beuchert E, Ramsay RG, Sansom OJ, Ernst M, Clevers H, Vincan E (2015) Frizzled7 functions as a Wnt receptor in intestinal epithelial Lgr5(+) stem cells. Stem Cell Rep 4:759–767

    Article  CAS  Google Scholar 

  • Fujimoto K, Matsuura K, Hu-Wang E, Lu R, Shi Y-B (2012) Thyroid hormone activates protein arginine methyltransferase 1 expression by directly inducing c-Myc transcription during Xenopus intestinal stem cell development. J Biol Chem 287:10039–10050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harper J, Mould A, Andrews RM, Bikoff EK, Robertson EJ (2011) The transcriptional repressor Blimp1/Prdm1 regulates postnatal reprogramming of intestinal enterocytes. Proc Natl Acad Sci U S A 108:10585–10590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasebe T, Kajita M, Shi Y-B, Ishizuya-Oka A (2008) Thyroid hormone-up-regulated hedgehog interacting protein is involved in larval-to-adult intestinal remodeling by regulating sonic hedgehog signaling pathway in Xenopus laevis. Dev Dyn 237:3006–3015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heimeier RA, Das B, Buchholz DR, Fiorentino M, Shi Y-B (2010) Studies on Xenopus laevis intestine reveal biological pathways underlying vertebrate gut adaptation from embryo to adult. Genome Biol 11:R55

    Article  PubMed  PubMed Central  Google Scholar 

  • Hourdry J, Dauca M (1977) Cytological and cytochemical changes in the intestinal epithelium during amphibian metamorphosis. Int Rev Cytol (Suppl) 5:337–385

    Google Scholar 

  • Ishizuya-Oka A, Hasebe T (2013) Establishment of intestinal stem cell niche during amphibian metamorphosis. Curr Top Dev Biol 103:305–327

    Article  CAS  PubMed  Google Scholar 

  • Ishizuya-Oka A, Shimozawa A (1991) Induction of metamorphosis by thyroid hormone in anuran small intestine cultured organotypically in vitro. In Vitro Cell Dev Biol 27A:853–857

    Article  CAS  PubMed  Google Scholar 

  • Ishizuya-Oka A, Ueda S (1996) Apoptosis and cell proliferation in the Xenopus small intestine during metamorphosis. Cell Tissue Res 286:467–476

    Article  CAS  PubMed  Google Scholar 

  • Ishizuya-Oka A, Shimizu K, Sakakibara S, Okano H, Ueda S (2003) Thyroid hormone-upregulated expression of Musashi-1 is specific for progenitor cells of the adult epithelium during amphibian gastrointestinal remodeling. J Cell Sci 116:3157–3164

    Article  CAS  PubMed  Google Scholar 

  • Ishizuya-Oka A, Hasebe T, Buchholz DR, Kajita M, Fu L, Shi Y-B (2009) Origin of the adult intestinal stem cells induced by thyroid hormone in Xenopus laevis. FASEB J 23:2568–2575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishizuya-Oka A, Kajita M, Hasebe T (2014) Thyroid hormone-regulated Wnt5a/Ror2 signaling is essential for dedifferentiation of larval epithelial cells into adult stem cells in the Xenopus laevis intestine. PLoS ONE 9:e107611

    Article  PubMed  PubMed Central  Google Scholar 

  • Katoh M, Katoh M (2007) Wnt signaling pathway and stem cell signaling network. Clin Cancer Res 13:4042–4025

    Article  CAS  PubMed  Google Scholar 

  • Kawano Y, Kypta R (2003) Secreted antagonists of the Wnt signalling pathway. J Cell Sci 116:2627–2634

    Article  CAS  PubMed  Google Scholar 

  • Kikuyama S, Kawamura K, Tanaka S, Yamamoto K (1993) Aspects of amphibian metamorphosis: hormonal control. Int Rev Cytol 145:105–148

    Article  CAS  PubMed  Google Scholar 

  • Kim B, Mao MJ, Taketo MM, Shivdasani RA (2007) Phases of canonical Wnt signaling during the development of mouse intestinal epithelium. Gastroenterology 133:529–538

    Article  CAS  PubMed  Google Scholar 

  • Korinek V, Barker N, Moerer P, Donselaar E van, Huls G, Peters PJ, Clevers H (1998) Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 19:379–383

  • Kress E, Rezza A, Nadiar J, Samarut J, Plateroti M (2009) The frizzled-related sfrp2 gene is a target of thyroid hormone receptor α1 and activates β-catenin signaling in mouse intestine. J Biol Chem 284:1234–1241

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Lu W, King TD, Liu CC, Bijur GN, Bu G (2010) Dkk1 stabilizes Wnt co-receptor Lrp6: implication for Wnt ligand-induced Lrp6 down-regulation. PLoS ONE 5:e11014

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsuyama M, Aizawa S, Shimono A (2009) Sfrp controls apicobasal polarity and oriented cell division in developing gut epithelium. PLoS Genet 5:e1000427

    Article  PubMed  PubMed Central  Google Scholar 

  • McAvoy JW, Dixon KE (1977) Cell proliferation and renewal in the small intestinal epithelium of metamorphosing and adult Xenopus laevis. J Exp Zool 202:129–138

    Article  Google Scholar 

  • Muncan V, Heijmans J, Krasinski SD, Buller NV, Wildenberg ME, Meisner S, Radonjic M, Stapleton KA, Lamers WH, Biemond I, Bergh Weerman MA van den, O'Carroll D, Hardwick JC, Hommes DW, Brink GR van den (2011) Blimp1 regulates the transition of neonatal to adult intestinal epithelium. Nat Commun 2:452

  • Nakamura T, Nakamura T, Matsumoto K (2008) The functions and possible significance of Kremen as the gatekeeper of Wnt signalling in development and pathology. J Cell Mol Med 12:391–408

    Article  CAS  PubMed  Google Scholar 

  • Nieuwkoop PD, Faber J (1967) Normal table of Xenopus laevis (Daudin). North-Holland, Amsterdam

    Google Scholar 

  • Oishi I, Suzuki H, Onishi N, Takada R, Kani S, Ohkawara B, Koshida I, Suzuki K, Yamada G, Schwabe GC, Mundlos S, Shibuya H, Takada S, Minami Y (2003) The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells 8:645–654

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Clevers H (2013) Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340:1190–1194

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Vries RG, Snippert HJ, Wetering M van de, Barker N, Stange DE, Es JH van, Abo A, Kujala P, Peters PJ, Clevers H (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265

  • Sato T, Es JH van, Snippert HJ, Stange DE, Vries RG, Born M van den, Barker N, Shroyer NF, Wetering M van de, Clevers H (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469:415–418

  • Satoh W, Matsuyama M, Takemura H, Aizawa S, Shimono A (2008) Sfrp1, Sfrp2, and Sfrp5 regulate the Wnt/β-catenin and the planar cell polarity pathways during early trunk formation in mouse. Genesis 46:92–103

    Article  PubMed  Google Scholar 

  • Schneider S, Steinbeisser H, Warga RM, Hausen P (1996) β-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech Dev 57:191–198

    Article  CAS  PubMed  Google Scholar 

  • Shi Y-B (1999) Amphibian metamorphosis: from morphology to molecular biology. Wiley, New York

    Google Scholar 

  • Shi Y-B, Ishizuya-Oka A (1996) Biphasic intestinal development in amphibians: embryogenesis and remodeling during metamorphosis. Curr Top Dev Biol 32:205–235

    Article  CAS  PubMed  Google Scholar 

  • Shi Y-B, Liang VC (1994) Cloning and characterization of the ribosomal protein L8 gene from Xenopus laevis. Biochim Biophys Acta 1217:227–228

    Article  CAS  PubMed  Google Scholar 

  • Sirakov M, Plateroti M (2011) The thyroid hormones and their nuclear receptors in the gut: from developmental biology to cancer. Biochim Biophys Acta 1812:938–946

    Article  CAS  PubMed  Google Scholar 

  • Sirakov M, Skah S, Nadjar J, Plateroti M (2013) Thyroid hormone’s action on progenitor/stem cell biology: new challenge for a classic hormone? Biochim Biophys Acta 1830:3917–3927

    Article  CAS  PubMed  Google Scholar 

  • Skah S, Nadjar J, Sirakov M, Plateroti M (2015) The secreted frizzled-related protein 2 modulates cell fate and the Wnt pathway in the murine intestinal epithelium. Exp Cell Res 330:56–65

    Article  CAS  PubMed  Google Scholar 

  • Snippert HJ, Flier LG van der, Sato T, van Es JH, Born M, Kroon-Veenboer C van den, Barker N, Klein AM, Rheenen J van, Simons BD, Clevers H (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143:134–144

  • Sun G, Hasebe T, Fujimoto K, Lu R, Fu L, Matsuda H, Kajita M, Ishizuya-Oka A, Shi Y-B (2010) Spatio-temporal expression profile of stem cell-associated gene LGR5 in the intestine during thyroid hormone-dependent metamorphosis in Xenopus laevis. PLoS ONE 5:e13605

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun G, Heimeier RA, Fu L, Hasebe T, Das B, Ishizuya-Oka A, Shi Y-B (2013) Expression profiling of intestinal tissues implicates tissue-specific genes and pathways essential for thyroid hormone-induced adult stem cell development. Endocrinology 154:4396–4407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki H, Watkins DN, Jair KW, Schuebel KE, Markowitz SD, Chen WD, Pretlow TP, Yang B, Akiyama Y, Engeland M van, Toyota M, Tokino T, Hinoda Y, Imai K, Herman JG, Baylin SB (2004) Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet 36:417–422

  • Wang K, Zhang Y, Li X, Chen L, Wang H, Wu J, Zheng J, Wu D (2008) Characterization of the Kremen-binding site on Dkk1 and elucidation of the role of Kremen in Dkk-mediated Wnt antagonism. J Biol Chem 283:23371–23375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuko Ishizuya-Oka.

Additional information

This work was supported in part by the Grants-in-Aid for Scientific Research (C) from the Ministry of Education, Science and Culture of Japan (Grant No. 25440160 to T. H. and No. 24570078 to A. I.-O.).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasebe, T., Fujimoto, K., Kajita, M. et al. Thyroid hormone activates Wnt/β-catenin signaling involved in adult epithelial development during intestinal remodeling in Xenopus laevis . Cell Tissue Res 365, 309–318 (2016). https://doi.org/10.1007/s00441-016-2396-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2396-8

Keywords

Navigation