Skip to main content

Advertisement

Log in

Interrelationships between sirtuin 1 and transcription factors p53 and NF-κB (p50/p65) in the control of ovarian cell apoptosis and proliferation

  • Short Communication
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The roles of the mTOR system enzyme sirtuin 1 (SIRT1), the transcription factor p53 and the nuclear factor kappaB (NF-κB) and their interrelationships in the control of ovarian function have not been well studied. We examine, in vitro, the involvement of SIRT1, p53 and the p65 and p50 subunits of NFκB and their interrelationships in the control of the apoptosis and proliferation of porcine ovarian granulosa cells. Monolayers of primary granulosa cells were transfected with cDNA constructs encoding SIRT1, p53, p65 or p50 alone or were co-transfected with gene constructs for SIRT1 together with p53, p65 or p50. The accumulation of SIRT1, markers of proliferation (mitogen-activated protein kinase or extracellular-signal-regulated kinases 1,2) and a marker of apoptosis (caspase 3) was detected by immunocytochemistry. Transfection of cells with a SIRT1 gene construct alone promoted the accumulation of SIRT1 and decreased the accumulation of proliferation markers but did not affect the marker of apoptosis. Transfection of cells with gene constructs encoding p53, p50 or p65 decreased the expression of proliferation markers but not the apoptosis marker. Co-transfection of cells with SIRT1 cDNA changed the action of p65 on cell proliferation from inhibitory to stimulatory. SIRT1 overexpression induced the pro-apoptotic action of p53 and p50 but not of p65 constructs. Thus, SIRT1, p53 and NF-κB are involved in the control of both the proliferation and the apoptosis of ovarian cells. These novel data on the cross-talk between the mTOR/SIRT1 system and the transcription factors p53 and NF-κB show both the inhibitory (proliferation) and stimulatory (apoptosis) influences of SIRT1 on transcription factor action in ovarian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Amsterdam A, Sasson R, Keren-Tal I, Aharoni D, Dantes A, Rimon E, Land A, Cohen T, Dor Y, Hirsh L (2003) Alternative pathways of ovarian apoptosis: death for life. Biochem Pharmacol 66:1355–1362

  • Baker SJ, Markowitz S, Fearon ER, Willson JK, Vogelstein B (1990) Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249:912–915

    Article  PubMed  CAS  Google Scholar 

  • Bordone L, Motta MC, Picard F, Robinson A, Jhala US, Apfeld J, McDonagh T, Lemieux M, McBurney M, Szilvasi A, Easlon EJ, Lin SJ, Guarente L (2006) Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β cells. PLoS Biol 4:e31

    Article  PubMed  PubMed Central  Google Scholar 

  • Bourguignon LY, Xia W, Wong G (2009) Hyaluronan-mediated CD44 interaction with p300 and SIRT1 regulates beta-catenin signaling and NFkappaB-specific transcription activity leading to MDR1 and Bcl-xL gene expression and chemoresistance in breast tumor cells. J Biol Chem 284:2657–2671

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen J, Zhou Y, Mueller-Steiner S, Chen LF, Kwon H, Yi S, Mucke L, Gan L (2005) SIRT1 protects against microglia-dependent amyloid-{beta} toxicity through inhibiting NF-{kappa} B signaling. J Biol Chem 280:40364–40374

    Article  PubMed  CAS  Google Scholar 

  • Cherian-Shaw M, Das R, Vandevoort CA, Chaffin CL (2004) Regulation of steroidogenesis by p53 in macaque granulosa cells and H295R human adrenocortical cells. Endocrinology 145:5734–5744

    Article  PubMed  CAS  Google Scholar 

  • Duckett CS, Perkins ND, Kowalik TF, Schmid RM, Huang E-S, Baldwin AS, Nabel GJ (1993) Dimerization of NF-KB2 with RelA (p65) regulates DNA binding, transcriptional activation, and inhibition by an I kappa B-alpha (MAD-3). Mol Cell Biol 13:1315–1322

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ghosh S, May MJ, Kopp EB (1998) NF-κB and rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16:225–260

    Article  PubMed  CAS  Google Scholar 

  • Ghosh HS, Spencer JV, Ng B, McBurney MW, Robbins PD (2007) Sirt1 interacts with transducin-like enhancer of split-1 to inhibit nuclear factor κB-mediated transcription. Biochem J 408:105–111

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gonzalez-Navarrete F, Eisner V, Morales P, Castro O, Pommer R, Quiroga C, Lavandero S, Devoto L (2007) Tumor necrosis factor-alpha activates nuclear factor-kappaB but does not regulate progesterone production in cultured human granulosa luteal cells. Gynecol Endocrinol 23:377–384

    Article  PubMed  CAS  Google Scholar 

  • Jin D, Tan HJ, Lei T, Gan L, Chen XD, Long QQ, Feng B, Yang ZQ (2009) Molecular cloning and characterization of porcine sirtuin genes. Comp Biochem Physiol B Biochem Mol Biol 153:348–458

    Article  PubMed  CAS  Google Scholar 

  • Kloster MM, Naderi EH, Haaland I, Gjertsen BT, Blomhoff HK, Naderi S (2013) cAMP signalling inhibits p53 acetylation and apoptosis via HDAC and SIRT deacetylases. Int J Oncol 42:1815–1821

    PubMed  CAS  Google Scholar 

  • Lee J-H, Song M-Y, Song E-K, Kim E-K, Moon WS, Han M-K, Park J-W, Kwon K-B, Park B-H (2009) Overexpression of SIRT1 protects pancreatic β-cells against cytokine toxicity by suppressing the nuclear factor-{kappa} B signaling pathway. Diabetes 58:344–351

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu L, Liu PW, He D, Liang C, Yu Y (2012) Exogenous NA(+) supplementation protects H9c2 cardiac myoblasts against hypoxia/reoxygenation injury via Sirt1-p53 pathway. Fundam Clin Pharmacol. doi:10.1111/fcp.12016

    PubMed  Google Scholar 

  • Mazumder S, Plesca D, Almasan A (2008) Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis. Methods Mol Biol 414:13–21

    PubMed  CAS  Google Scholar 

  • Morita Y, Wada-Hiraike O, Yano T, Shirane A, Hirano M, Hiraike H, Koyama S, Oishi H, Yoshino O, Miyamoto Y, Sone K, Oda K, Nakagawa S, Tsutsui K, Taketani Y (2012) Resveratrol promotes expression of SIRT1 and StAR in rat ovarian granulosa cells: an implicative role of SIRT1 in the ovary. Reprod Biol Endocrinol 10:14

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nalam RL, Pletcher SD, Matzuk MM (2008) Appetite for reproduction: dietary restriction, aging and the mammalian gonad. J Biol 16:23

    Article  Google Scholar 

  • Nigg EA (2001) Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2:21–32

    Article  PubMed  CAS  Google Scholar 

  • Osborn M, Isenberg S (1994) Immunocytochemistry of frozem and paraffin tissue sections. In: Celis JE (ed) Cell biology. A laboratory handbook. Academic Press, New York, pp 361–367

    Google Scholar 

  • Pang WJ, Xiong Y, Wang Y, Tong Q, Yang GS (2013) Sirt1 attenuates camptothecin-induced apoptosis through caspase-3 pathway in porcine preadipocytes. Exp Cell Res 319:670–683

    Article  PubMed  CAS  Google Scholar 

  • Pavlová S, Klucska K, Vašíček D, Kotwica J, Sirotkin AV (2011) Transcription factor NF-κB (p50/p50, p65/p65) controls porcine ovarian cells functions. Anim Reprod Sci 128:73–84

    Article  PubMed  Google Scholar 

  • Pavlová S, Klucska K, Vašíček D, Ryban L, Harrath AH, Alwasel SH, Sirotkin AV (2013) The involvement of SIRT1 and transcription factor NF-κB (p50/p65) in regulation of porcine ovarian cell function. Anim Reprod Sci 140:180–188

    Article  PubMed  Google Scholar 

  • Perkins ND (2004) NF-κB: tumor promoter or suppressor? Trends Cell Biol 14:64–68

    Article  PubMed  CAS  Google Scholar 

  • Sirotkin AV (2010) Transcription factors and ovarian functions. J Cell Physiol 225:20–26

    Article  PubMed  CAS  Google Scholar 

  • Sirotkin AV, Bernčo A, Tandlmajerová A, Vašiček D, Kotwica J, Darlak K, Valenzuela F (2008) Transcription factor p53 can regulate proliferation, apoptosis and secretory activity of luteinizing porcine ovarian granulose cells cultured with and without ghrelin and FSH. Reproduction 136:611–618

    Article  PubMed  CAS  Google Scholar 

  • Sirotkin AV, Benčo A, Tandlmajerová A, Vašíček D (2012) Involvement of transcription factor p53 and leptin in control of porcine ovarian granulosa cell functions. Cell Prolif 45:9–14

    Article  PubMed  CAS  Google Scholar 

  • Telleria CM, Goyeneche AA, Stocco CO, Gibori G (2004) Involvement of nuclear factor kappa B in the regulation of rat luteal function: potential roles as survival factor and inhibitor of 20alpha-hydroxysteroid dehydrogenase. J Mol Endocrinol 2:365–383

    Article  Google Scholar 

  • Thakur BK, Dittrich T, Chandra P, Becker A, Lippka Y, Selvakumar D, Klusmann JH, Reinhardt D, Welte K (2012) Inhibition of NAMPT pathway by FK866 activates the function of p53 in HEK293T cells. Biochem Biophys Res Commun 424:371–377

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Chan S, Tsang BK (2002) Involvement of inhibitory nuclear factor-kappaB (NFkappaB)-independent NFkappaB activation in the gonadotropic regulation of X-linked inhibitor of apoptosis expression during ovarian follicular development in vitro. Endocrinology 143:2732–2740

    PubMed  CAS  Google Scholar 

  • Yang S-R, Wright J, Bauter M, Seweryniak K, Kode A, Rahman I (2007) Sirtuin regulates cigarette smoke-induced proinflammatory mediator release via RelA/p65 NF-κB in macrophages in vitro and in rat lungs in vivo: implications for chronic inflammation and aging. Am J Physiol Lung Cell Mol Physiol 292:L567–L576

    Article  PubMed  CAS  Google Scholar 

  • Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW (2004) Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23:2369–2380

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xiang Y, Xu J, Li L, Lin X, Chen X, Zhang X, Fu Y, Luo L (2012) Calorie restriction increases primordial follicle reserve in mature female chemotherapy-treated rats. Gene 493:77–82

    Article  PubMed  CAS  Google Scholar 

  • Xiao CW, Asselin E, Tsang BK (2002) Nuclear factor kappaB-mediated induction of Flice-like inhibitory protein prevents tumor necrosis factor alpha-induced apoptosis in rat granulosa cells. Biol Reprod 67:436–441

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Ž. Kuklová and Ms. K. Tóthová (Animal Production Research Centre Nitra, Slovakia) for skillful help in analysing the samples, to Dr. P. Puigserver and Dr. J. T. Rodgers (John Hopkins University School of Medicine, Baltimore, Maryland, USA) for kindly providing the constructs for SIRT1, to Dr. N. D. Perkins and Dr. C. Duckett (University of Dundee, Dundee, UK) for kindly providing the constructs for the p53, p50 and p65 subunits of NF-κB and to Dr. M. Bauer (Animal Production Research Centre Nitra, Slovakia) for help with the validation of constructs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Sirotkin.

Additional information

These studies were supported by The Ministry of Agriculture of the Slovak Republic, project RUVV 07–13 and the Agency for Support of Research and Development of Slovak Republic (APVV), projects “REPROPLANT” no. APVV-0854–11, “NANOREPRO” no. APVV-4040-11 and “ZDRAVIE” no. 26220220176, supported by the Operational Programme Research and Development funded by the European Regional Development Fund. A.H. Harrath, S.H. Alwasel and A.V. Sirotkin extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through the research group project NoRGP-VPP-164.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirotkin, A.V., Dekanová, P., Harrath, A.H. et al. Interrelationships between sirtuin 1 and transcription factors p53 and NF-κB (p50/p65) in the control of ovarian cell apoptosis and proliferation. Cell Tissue Res 358, 627–632 (2014). https://doi.org/10.1007/s00441-014-1940-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1940-7

Keywords

Navigation