Skip to main content

Advertisement

Log in

Expression and effects of epidermal growth factor on human periodontal ligament cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Repair of damaged periodontal ligament (PDL) tissue is an essential challenge in tooth preservation. Various researchers have attempted to develop efficient therapies for healing and regenerating PDL tissue based on tissue engineering methods focused on targeting signaling molecules in PDL stem cells and other mesenchymal stem cells. In this context, we investigated the expression of epidermal growth factor (EGF) in normal and surgically wounded PDL tissues and its effect on chemotaxis and expression of osteoinductive and angiogenic factors in human PDL cells (HPDLCs). EGF as well as EGF receptor (EGFR) expression was observed in HPDLCs and entire PDL tissue. In a PDL tissue-injured model of rat, EGF and IL-1β were found to be upregulated in a perilesional pattern. Interleukin-1β induced EGF expression in HPDLCs but not EGFR. It also increased transforming growth factor-α (TGF-α) and heparin-binding EGF-like growth factor (HB-EGF) expression. Transwell assays demonstrated the chemotactic activity of EGF on HPDLCs. In addition, EGF treatment significantly induced secretion of bone morphogenetic protein 2 and vascular endothelial growth factor, and gene expression of interleukin-8 (IL-8), and early growth response-1 and -2 (EGR-1/2). Human umbilical vein endothelial cells developed well-formed tube networks when cultured with the supernatant of EGF-treated HPDLCs. These results indicated that EGF upregulated under inflammatory conditions plays roles in the repair of wounded PDL tissue, suggesting its function as a prospective agent to allow the healing and regeneration of this tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beertsen W, McCulloch CA, Sodek J (1997) The periodontal ligament: a unique, multifunctional connective tissue. Periodontol 2000 13:20–40

    Article  CAS  PubMed  Google Scholar 

  • Berkovitz BKB, Shore RC (1995) Cells of periodontal ligament, 2nd edn. Mosby-Wolfe, London

    Google Scholar 

  • Chandra A, Lan S, Zhu J, Siclari V, Qin L (2013) Epidermal Growth Factor Receptor (EGFR) signaling promotes proliferation and survival in osteoprogenitors by increasing Early Growth Response Protein (Egr2) expression. J Biol Chem 88:20488–20498

    Article  Google Scholar 

  • Cho MI, Garant PR (1996) Expression and role of epidermal growth factor receptors during differentiation of cementoblasts, osteoblasts, and periodontal ligament fibroblasts in the rat. Anat Rec 245:342–360

    Article  CAS  PubMed  Google Scholar 

  • Cohen S, Elliott GA (1963) The stimulation of epidermal keratinization by a protein isolated from the submaxillary gland of the mouse. J Investig Dermatol 40:1–5

    CAS  PubMed  Google Scholar 

  • Eliasson P, Andersson T, Hammerman M, Aspenberg P (2013) Primary gene response to mechanical loading in healing rat Achilles tendons. J Appl Physiol 114:1519–1526

    Article  CAS  PubMed  Google Scholar 

  • Fang F, Ooka K, Bhattacharyya S, Wei J, Wu M, Du P, Lin S, Del Galdo F, Feghali-Bostwick CA, Varga J (2011) The early growth response gene Egr2 (Alias Krox20) is a novel transcriptional target of transforming growth factor-beta that is up-regulated in systemic sclerosis and mediates profibrotic responses. Am J Pathol 178:2077–2090

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujii S, Maeda H, Wada N, Kano Y, Akamine A (2006) Establishing and characterizing human periodontal ligament fibroblasts immortalized by SV40T-antigen and hTERT gene transfer. Cell Tissue Res 324:117–125

    Article  CAS  PubMed  Google Scholar 

  • Fujii S, Maeda H, Wada N, Tomokiyo A, Saito M, Akamine A (2008) Investigating a clonal human periodontal ligament progenitor/stem cell line in vitro and in vivo. J Cell Physiol 215:743–749

    Article  CAS  PubMed  Google Scholar 

  • Fujii S, Maeda H, Tomokiyo A, Monnouchi S, Hori K, Wada N, Akamine A (2010) Effects of TGF-beta1 on the proliferation and differentiation of human periodontal ligament cells and a human periodontal ligament stem/progenitor cell line. Cell Tissue Res 342:233–242

    Article  CAS  PubMed  Google Scholar 

  • Fujita T, Shiba H, Van Dyke TE, Kurihara H (2004) Differential effects of growth factors and cytokines on the synthesis of SPARC, DNA, fibronectin and alkaline phosphatase activity in human periodontal ligament cells. Cell Biol Int 28:281–286

    Article  CAS  PubMed  Google Scholar 

  • Gospodarowicz D, Bialecki H, Thakral TK (1979) The angiogenic activity of the fibroblast and epidermal growth factor. Exp Eye Res 28:501–514

    Article  CAS  PubMed  Google Scholar 

  • Grose R, Harris BS, Cooper L, Topilko P, Martin P (2002) Immediate early genes krox-24 and krox-20 are rapidly up-regulated after wounding in the embryonic and adult mouse. Dev Dyn 223:371–378

    Article  CAS  PubMed  Google Scholar 

  • Ito J, Harada N, Nagashima O, Makino F, Usui Y, Yagita H, Okumura K, Dorscheid DR, Atsuta R, Akiba H, Takahashi K (2011) Wound-induced TGF-beta1 and TGF-beta2 enhance airway epithelial repair via HB-EGF and TGF-alpha. Biochem Biophys Res Commun 412:109–114

    Article  CAS  PubMed  Google Scholar 

  • Iwabu A, Smith K, Allen FD, Lauffenburger DA, Wells A (2004) Epidermal growth factor induces fibroblast contractility and motility via a protein kinase C delta-dependent pathway. J Biol Chem 279:14551–14560

    Article  CAS  PubMed  Google Scholar 

  • Kerpedjieva SS, Kim DS, Barbeau DJ, Tamama K (2012) EGFR ligands drive multipotential stromal cells to produce multiple growth factors and cytokines via early growth response-1. Stem Cells Dev 21:2541–2551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim YS, Lew DH, Tark KC, Rah DK, Hong JP (2010) Effect of recombinant human epidermal growth factor against cutaneous scar formation in murine full-thickness wound healing. J Korean Med Sci 25:589–596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koch AE, Polverini PJ, Kunkel SL, Harlow LA, DiPietro LA, Elner VM, Elner SG, Strieter RM (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258:1798–1801

    Article  CAS  PubMed  Google Scholar 

  • Komiyama Y, Ohba S, Shimohata N, Nakajima K, Hojo H, Yano F, Takato T, Docheva D, Shukunami C, Hiraki Y, Chung UI (2013) Tenomodulin expression in the periodontal ligament enhances cellular adhesion. PLoS ONE 8:e60203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kono K, Maeda H, Fujii S, Tomokiyo A, Yamamoto N, Wada N, Monnouchi S, Teramatsu Y, Hamano S, Koori K, Akamine A (2013) Exposure to transforming growth factor-beta1 after basic fibroblast growth factor promotes the fibroblastic differentiation of human periodontal ligament stem/progenitor cell lines. Cell Tissue Res 352:249–263

    Article  CAS  PubMed  Google Scholar 

  • Laflamme C, Curt S, Rouabhia M (2010) Epidermal growth factor and bone morphogenetic proteins upregulate osteoblast proliferation and osteoblastic markers and inhibit bone nodule formation. Arch Oral Biol 55:689–701

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Ren Z, Ma Y, Xu L, Zhao Y, Zheng C, Fang Y, Xue T, Sun B, Xiao W (2009) Targeted knockdown of EGR-1 inhibits IL-8 production and IL-8-mediated invasion of prostate cancer cells through suppressing EGR-1/NF-kappaB synergy. J Biol Chem 284:34600–34606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maeda H, Wada N, Fujii S, Tomokiyo A, Akamine A (2011) Periodontal ligament stem cells. InTech, Rijeka

    Google Scholar 

  • Maeda H, Fujii S, Tomokiyo A, Wada N, Akamine A (2013a) Periodontal tissue engineering: defining the triad. Int J Oral Maxillofac Implants 28:e461–e471

    Article  PubMed  Google Scholar 

  • Maeda H, Wada N, Tomokiyo A, Monnouchi S, Akamine A (2013b) Prospective potency of TGF-beta1 on maintenance and regeneration of periodontal tissue. Int Rev Cell Mol Biol 304:283–367

    Article  CAS  PubMed  Google Scholar 

  • Marquez L, de Abreu FA, Ferreira CL, Alves GD, Miziara MN, Alves JB (2013) Enhanced bone healing of rat tooth sockets after administration of epidermal growth factor (EGF) carried by liposome. Injury 44:558–564

    Article  PubMed  Google Scholar 

  • Monnouchi S, Maeda H, Fujii S, Tomokiyo A, Kono K, Akamine A (2011) The roles of angiotensin II in stretched periodontal ligament cells. J Dent Res 90:181–185

    Article  CAS  PubMed  Google Scholar 

  • Pyrc K, Milewska A, Kantyka T, Sroka A, Maresz K, Koziel J, Nguyen KA, Enghild JJ, Knudsen AD, Potempa J (2013) Inactivation of epidermal growth factor by Porphyromonas gingivalis as a potential mechanism for periodontal tissue damage. Infect Immun 81:55–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schultz G, Rotatori DS, Clark W (1991) EGF and TGF-alpha in wound healing and repair. J Cell Biochem 45:346–352

    Article  CAS  PubMed  Google Scholar 

  • Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155

    Article  CAS  PubMed  Google Scholar 

  • Shen XH, Xu SJ, Jin CY, Ding F, Zhou YC, Fu GS (2013) Interleukin-8 prevents oxidative stress-induced human endothelial cell senescence via telomerase activation. Int Immunopharmacol 16:261–267

    Article  CAS  PubMed  Google Scholar 

  • Shimoyamada H, Yazawa T, Sato H, Okudela K, Ishii J, Sakaeda M, Kashiwagi K, Suzuki T, Mitsui H, Woo T, Tajiri M, Ohmori T, Ogura T, Masuda M, Oshiro H, Kitamura H (2010) Early growth response-1 induces and enhances vascular endothelial growth factor-A expression in lung cancer cells. Am J Pathol 177:70–83

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Swirnoff AH, Milbrandt J (1995) DNA-binding specificity of NGFI-A and related zinc finger transcription factors. Mol Cell Biol 15:2275–2287

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tamama K, Barbeau DJ (2012) Early growth response genes signaling supports strong paracrine capability of mesenchymal stem cells. Stem Cells Int 2012:428403

    Article  PubMed Central  PubMed  Google Scholar 

  • Tamama K, Kawasaki H, Wells A (2010) Epidermal growth factor (EGF) treatment on multipotential stromal cells (MSCs). Possible enhancement of therapeutic potential of MSC. J Biomed Biotechnol 2010:795385

    Article  PubMed Central  PubMed  Google Scholar 

  • Tomokiyo A, Maeda H, Fujii S, Wada N, Shima K, Akamine A (2008) Development of a multipotent clonal human periodontal ligament cell line. Differentiation 76:337–347

    Article  CAS  PubMed  Google Scholar 

  • Tomokiyo A, Maeda H, Fujii S, Monnouchi S, Wada N, Hori K, Koori K, Yamamoto N, Teramatsu Y, Akamine A (2012a) Alternation of extracellular matrix remodeling and apoptosis by activation of the aryl hydrocarbon receptor pathway in human periodontal ligament cells. J Cell Biochem 113:3093–3103

    Article  CAS  PubMed  Google Scholar 

  • Tomokiyo A, Maeda H, Fujii S, Monnouchi S, Wada N, Kono K, Yamamoto N, Koori K, Teramatsu Y, Akamine A (2012b) A multipotent clonal human periodontal ligament cell line with neural crest cell phenotypes promotes neurocytic differentiation, migration, and survival. J Cell Physiol 227:2040–2050

    Article  CAS  PubMed  Google Scholar 

  • Vranckx JJ, Hoeller D, Velander PE, Theopold CF, Petrie N, Takedo A, Eriksson E, Yao F (2007) Cell suspension cultures of allogenic keratinocytes are efficient carriers for ex vivo gene transfer and accelerate the healing of full-thickness skin wounds by overexpression of human epidermal growth factor. Wound Repair Regen 15:657–664

    Article  PubMed  Google Scholar 

  • Yamamoto N, Maeda H, Tomokiyo A, Fujii S, Wada N, Monnouchi S, Kono K, Koori K, Teramatsu Y, Akamine A (2012) Expression and effects of glial cell line-derived neurotrophic factor on periodontal ligament cells. J Clin Periodontol 39:556–564

    Article  CAS  PubMed  Google Scholar 

  • Yamawaki K, Matsuzaka K, Kokubu E, Inoue T (2010) Effects of epidermal growth factor and/or nerve growth factor on Malassez’s epithelial rest cells in vitro: expression of mRNA for osteopontin, bone morphogenetic protein 2 and vascular endothelial growth factor. J Periodontal Res 45:421–427

    Article  CAS  PubMed  Google Scholar 

  • Yucel-Lindberg T, Brunius G (2006) Epidermal growth factor synergistically enhances interleukin-8 production in human gingival fibroblasts stimulated with interleukin-1beta. Arch Oral Biol 51:892–898

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang L, Zhang M, Jin M, Bai C, Wang X (2012) Potential mechanism of interleukin-8 production from lung cancer cells: an involvement of EGF-EGFR-PI3K-Akt-Erk pathway. J Cell Physiol 227:35–43

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Ministry of Education, Culture, Sports, Science and Technology, Japan (grant number: 23689077, 24390426, 24659848, 24792028, 25293388, and 25670811). We thank Drs. Monnouchi, Hasegawa, Yuda and Yoshida for their great support in the preparation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidefumi Maeda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teramatsu, Y., Maeda, H., Sugii, H. et al. Expression and effects of epidermal growth factor on human periodontal ligament cells. Cell Tissue Res 357, 633–643 (2014). https://doi.org/10.1007/s00441-014-1877-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1877-x

Keywords

Navigation