Skip to main content

Advertisement

Log in

Dysfunction of neuronal calcium signalling in neuroinflammation and neurodegeneration

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Neurodegeneration has been increasingly recognised as the leading structural correlate of disability progression in autoimmune diseases such as multiple sclerosis. Since calcium signalling is known to regulate the development of degenerative processes in many cell types, it is believed to play significant roles in mediating neurodegeneration. Because of its function as a major juncture linking various insults and injuries associated with inflammatory attack on neuronal cell bodies and axons, it provides potential for the development of neuroprotective strategies. This is of great significance because of the lack of neuroprotective agents presently available to supplement the current array of immunomodulatory treatments. In this review, we summarise the role that various calcium channels and pumps have been shown to play in the development of neurodegeneration under inflammatory autoimmune conditions. The identification of suitable targets might also provide insights into applications in non-inflammatory neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Araujo IM, Carreira BP, Pereira T, Santos PF, Soulet D, Inacio A, Bahr BA, Carvalho AP, Ambrosio AF, Carvalho CM (2007) Changes in calcium dynamics following the reversal of the sodium-calcium exchanger have a key role in AMPA receptor-mediated neurodegeneration via calpain activation in hippocampal neurons. Cell Death Differ 14:1635–1656

    Article  CAS  PubMed  Google Scholar 

  • Arun T, Tomassini V, Sbardella E, de Ruiter MB, Matthews L, Leite MI, Gelineau-Morel R, Cavey A, Vergo S, Craner M, Fugger L, Rovira A, Jenkinson M, Palace J (2013) Targeting ASIC1 in primary progressive multiple sclerosis: evidence of neuroprotection with amiloride. Brain 136:106–115

    Article  PubMed  Google Scholar 

  • Basso AS, Frenkel D, Quintana FJ, Costa-Pinto FA, Petrovic-Stojkovic S, Puckett L, Monsonego A, Bar-Shir A, Engel Y, Gozin M, Weiner HL (2008) Reversal of axonal loss and disability in a mouse model of progressive multiple sclerosis. J Clin Invest 118:1532–1543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bechtold DA, Kapoor R, Smith JK (2004) Axonal protection using flecainide in experimental autoimmune encephalomyelitis. Ann Neurol 55:607–616

    Article  CAS  PubMed  Google Scholar 

  • Bitsch A, Schuchardt J, Bunkowski S, Kuhlmann T, Brück W (2000) Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain 123:1174–1183

    Article  PubMed  Google Scholar 

  • Black JA, Liu S, Hains BC, Saab CY, Waxman SG (2006) Long-term protection of central axons with phenytoin in monophasic and chronic-relapsing EAE. Brain 129:3196–3208

    Article  PubMed  Google Scholar 

  • Black JA, Liu S, Carrithers M, Carrithers LM, Waxman (2007a) Exacerbation of experimental autoimmune encephalomyelitis after withdrawal of phenytoin and carbamazepine. Ann Neurol 62:21–33

    Article  CAS  PubMed  Google Scholar 

  • Black JA, Newcombe J, Trapp BD, Waxman SG (2007b) Sodium channel expression within chronic multiple sclerosis plaques. J Neuropathol Exp Neurol 66:828–837

    Article  CAS  PubMed  Google Scholar 

  • Boretius S, Gadjanski I, Demmer I, Bähr M, Fiem R, Michaelis T, Frahm J (2008) MRI of optic neuritis in a rat model. Neuroimage 41:323–334

    Article  PubMed  Google Scholar 

  • Brand-Schieber E, Werner P (2004) Calcium channel blockers ameliorate disease in a mouse model of multiple sclerosis. Exp Neurol 189:5–9

    Article  CAS  PubMed  Google Scholar 

  • Brustovetsky T, Bolshakov A, Brustovetsky N (2009) Calpain activation and Na+/Ca2+ exchanger degradation occur downstream of calcium deregulation in hippocampal neurons exposed to excitotoxic glutamate. J Neurosci Res 88:1317–1328

    Google Scholar 

  • Chan SL, Mattson MP (1999) Caspase and calpain substrates: roles in synaptic plasticity and cell death. J Neurosci Res 58:167–190

    Article  CAS  PubMed  Google Scholar 

  • Craner MJ, Hains BC, Lo AC, Black JA, Waxman SG (2004a) Co-localization of sodium channel Nav1.6 and the sodium calcium exchanger at sites of axonal injury in the spinal cord in EAE. Brain 127:294–303

    Article  PubMed  Google Scholar 

  • Craner MJ, Newcombe J, Black JA, Hartle C, Cuzner ML, Waxman DG (2004b) Molecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger. Proc Natl Acad Sci U S A 101:8168–8173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Das A, Guyton MK, Smith A, Wallace G, McDowell ML, Matzelle DD, Ray SW, Banik NL (2013) Calpain inhibitor attenuated optic nerve damage in acute optic neuritis in rats. J Neurochem 123:133–146

    Article  Google Scholar 

  • Doble A (1999) The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther 81:162–221

    Article  Google Scholar 

  • Dong XX, Wang Y, Qin ZH (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogeneis of neurodegenerative diseases. Acta Pharmacol Sin 30:379–387

    Article  CAS  PubMed  Google Scholar 

  • Fairless R, Williams SK, Hoffmann DB, Stojic A, Hochmeister S, Schmitz F, Storch MK, Diem R (2012)Preclinical retinal neurodegeneration in a model of multiple sclerosis. J Neurosci 32:5585–5597

    Article  CAS  PubMed  Google Scholar 

  • Friese MA, Craner MJ, Etzensperger R, Vergo S, Wemmie JA, Welsh MJ, Vinvent A, Fugger L (2007) Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat Med 13:1483–1489

    Article  CAS  PubMed  Google Scholar 

  • Gadjanski I, Boretius S, Williams SK, Lingor P, Knöferle J, Sättler MB, Fairless R, Hochmeister S, Sühs KW, Michaelis T, Frahm J, Storch MK, Bähr M, Diem R (2009) Role of N-type voltage-dependent calcium channels in autoimmune optic neuritis. Ann Neurol 66:81–93

    Article  CAS  PubMed  Google Scholar 

  • Gadjanski I, Williams SK, Hein K, Sättler MB, Bähr M, Diem R (2011)Correlation of optical coherence tomography with clinical and histopathological findings in experimental autoimmune uveoretinitis. Exp Eye Res 93:82-90

    Article  CAS  PubMed  Google Scholar 

  • Gilgun-Sherki Y, Panet H, Melamed E, Offen D (2003) Riluzole suppresses experimental autoimmune encephalomyelitis: implications for the treatment of multiple sclerosis. Brain Res 989:196–204

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann DB, Williams SK, Bojcevski J, Müller A, Stadelmann C, Naidoo V, Bahr BA, Diem R, Fairless R (2013) Calcium influx and calpain activation mediate preclinical retinal neurodegeneration in autoimmune optic neuritis. J Neuropathol Exp Neurol 72:745–757

    Article  CAS  PubMed  Google Scholar 

  • Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi T, Kocsis JD, Waxman SG (1998) Resistance to anoxic injury in the dorsal columns of adult spinal cord following demyelination. Brain Res 779:292–296

    Article  CAS  PubMed  Google Scholar 

  • Inokuchi Y, Shimazawa M, Nakajima Y, Matsuda T, Baba A, Araie M, Kita S, Iwamoto T, Hara H (2009) A Na+/Ca2+ exchanger isoform, NCX1, is involved in retinal cell death after N-methyl-D-aspartate injection and ischemia-reperfusion. J Neurosci Res 87:906–917

    Article  CAS  PubMed  Google Scholar 

  • Kapoor R, Davies M, Blaker PA, Hall SM, Smith KJ (2003) Blockers of sodium and calcium entry protect axons from nitric oxide-mediated degeneration. Ann Neurol 53:174–180

    Article  CAS  PubMed  Google Scholar 

  • Kilinc D, Gallo G, Barbee KA (2009) Mechanical membrane injury induces axonal beading through localized activation of calpain. Exp Neurol 219:553–561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Killestein J, Kalkers NF, Polman CH (2005) Glutamate inhibition in MS: the neuroprotective properties of riluzole. J Neurol Sci 233:113–115

    Article  CAS  PubMed  Google Scholar 

  • Koretsky AP, Silva AC (2004) Manganese-enhanced magnetic resonance imaging (MEMRI). NMR Biomed 17:527–531

    Article  CAS  PubMed  Google Scholar 

  • Kornek B, Storch MK, Weissert R, Wallstroem E, Stefferl A, Olsson T, Linington C, Schmidbauer M, Lassmann H (2000) Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol 157:267–276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kornek B, Storch MK, Bauer J, Djamshidian A, Weisser R, Wallstroem E, Stefferl A, Zimprich F, Olsson T, Linnington C, Schmidbauer M, Lassmann H (2001) Distribution of a calcium channel subunit in dystrophic axons in multiple sclerosis and experimental autoimmune encephalomyelitis. Brain 124:1114–1124

    Article  CAS  PubMed  Google Scholar 

  • Kristián T, Siesjö BK (1998) Calcium in ischemic cell death. Stroke 29:705–718

    Article  PubMed  Google Scholar 

  • Lewis RS (2001) Calcium signalling mechanisms in T lymphocytes. Annu Rev Immunol 19:497–521

    Article  CAS  PubMed  Google Scholar 

  • Li S, Stys PK (2000) Mechanisms of ionotropic glutamate receptor-mediated excitotoxicity in isolated spinal cord white matter. J Neurosci 20:1190–1198

    CAS  PubMed  Google Scholar 

  • Mahad DJ, Ziabreva I, Campbell G, Lax N, White K, Hanson PS, Lassmann H, Turnbull DM (2009) Mitochondrial changes within axons in multiple sclerosis. Brain 132:1161–1174

    Article  PubMed Central  PubMed  Google Scholar 

  • Massullo P, Sumoza-Toledo A, Bhagat H, Partida-Sanchez S (2006) TRPM channels, calcium and redox sensors during innate immune responses. Semin Cell Dev Biol 17:654–666

    Article  CAS  PubMed  Google Scholar 

  • Matute C, Sanchez-Gomez MV, Martinez-Millan L, Miledi R (1997) Glutamate receptor-mediated toxicity in optic nerve oligodendrocytes. Proc Natl Acad Sci U S A 94:8830–8835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mayer ML, Westbrook GL (1987) Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J Physiol (Lond) 394:501–527

    CAS  Google Scholar 

  • McDonald JW, Althomsons SP, Hyrc KL, Choi DW, Goldberg MP (1998) Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor-mediated excitotoxicity. Nat Med 4:291–297

    Article  CAS  PubMed  Google Scholar 

  • McKernan DP, Guerin MB, O’Brien CJ, Cotter TG (2007) A key role for calpains in retinal ganglion cell death. Invest Ophthalmol Vis Sci 48:5420–5430

    Article  PubMed  Google Scholar 

  • Meyer R, Weissert R, Diem R, Storch MK, de Graaf KL, Kramer B, Bahr M (2001) Acute neuronal apoptosis in a rat model of multiple sclerosis.J Neurosci 21:6214–6220

    CAS  PubMed  Google Scholar 

  • Moldoveanu T, Hosfield CM, Lim D, Elce JS, Davies PL (2002) A Ca(2+) switch aligns the active site of calpain. Cell 108:649–660

    Article  CAS  PubMed  Google Scholar 

  • Nicot A, Ratnakar PV, Rom Y, Chen CC, Elkabes K (2003) Regulation of gene expression in experimental autoimmune encephalomyelitis indicates early neuronal dysfunction. Brain 126:398–412

    Article  PubMed  Google Scholar 

  • Nicot A, Kurnellas M, Elkabes S (2005) Temporal pattern of plasma membrane calcium ATPase2 expression in the spinal cord correlates with the course of clinical symptoms in two rodent models of autoimmune encephalomyelitis. Eur J Neurosci 21:2660–2670

    Article  PubMed Central  PubMed  Google Scholar 

  • Perraud AL, Knowles HM, Schmitz (2004) Novel aspects of signaling and ion-homeostasis regulation in immunocytes. The TRPM ion channels and their potential role in modulating the immune response. Mol Immunol 41:657–673

    Article  CAS  PubMed  Google Scholar 

  • Persson AK, Liu S, Faber CG, Merkies ISJ, Black JA, Waxman SG (2013) Neuropathy-associated Nav1.7 variant I228M impairs integrity of dorsal root ganglion neuron axons. Ann Neurol 73:140–145

    Article  CAS  PubMed  Google Scholar 

  • Piani D, Frei K, Do KQ, Cuenod M, Fontana A (1991) Murine brain macrophages induced NMDA receptor mediated neurotoxicity in vitro by secreting glutamate. Neurosci Lett 133:159–162

    Article  CAS  PubMed  Google Scholar 

  • Pitt D, Werner P, Raine CS (2000) Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 6:67–70

    Article  CAS  PubMed  Google Scholar 

  • Pottorf WJ, Johanns TM, Derrington SM, Strehler EE, Enyedi A, Thayer SA (2006) Glutamate-induced protease-mediated loss of plasma membrane Ca2+ pump activity in rat hippocampal neurons. J Neurochem 98:1646–1656

    Article  CAS  PubMed  Google Scholar 

  • Quintana A, Pasche M, Junker C, Al-Ansary D, Rieger H, Kummerow C, Nuñez L, Villalobos C, Meraner P, Becherer U, Rettig J, Niemeyer BA, Hoth M (2011) Calcium microdomains at the immunological synapse: how ORAI channels, mitochondria and calcium pumps generate local calcium signals for efficient T-cell activation. EMBO J 30:3895–3912

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sarchielli P, Greco L, Floridi A, Floridi A, Gallai V (2003) Excitatory amino acids and multiple sclerosis: evidence from cerebrospinal fluid. Arch Neurol 60:1082–1088

    Article  PubMed  Google Scholar 

  • Schattling B, Steinbach K, Thies E, Kruse M, Menigoz A, Ufer F, Flockerzi V, Brück W, Pongs O, Vennekens R, Kneussel M, Freichel M, Merkler D, Friese MA (2012) TRPM4 cation channel mediates axonal and neuronal degeneration in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med 18:1805–1811

    Article  CAS  PubMed  Google Scholar 

  • Schmidt A, Oberle N, Weiß EM, Vobis D, Frischbutter S, Baumgrass R, Falk CS, Haag M, Brügger B, Lin H, Mayr GW, Reichardt P, Gunzer M, Suri-Payer, Krammer PH (2011) Human regulatory T cells rapidy suppress T cell receptor-induced Ca(2+), NK-κB and NFAT signaling in conventional T cells. Sci Signal 4:ra90

    PubMed  Google Scholar 

  • Schwarz A, Schumacher M, Pfaff D, Jarius S, Balint B, Wiendl H, Wildemann B (2013) Fine-tuning of regulatory T cell function: the role of calcium signals and naive regulatory T cells for regulatory T cell deficiency in multiple sclerosis. J Immunol 190:4965–4970

    Article  CAS  PubMed  Google Scholar 

  • Shijie J, Takeuchi H, Yawata I, Harada Y, Sonobe Y, Doi Y, Liang J, Hua L, Yasuoka S, Zhou Y, Noda M, Kawanokuchi J, Mizuno T, Suzumura A (2009) Blockade of glutamate release from microglia attenuates experimental autoimmune encephalomyelitis in mice. Tohoku J Exp Med 217:87–92

    Article  CAS  PubMed  Google Scholar 

  • Smith KJ (2007) Sodium channels and multiple sclerosis: roles in symptom production, damage and therapy. Brain Pathol 17:230–242

    Article  CAS  PubMed  Google Scholar 

  • Smith KJ, Lassmann H (2002) The role of nitric oxide in multiple sclerosis. Lancet Neurol 1:232–241

    Article  CAS  PubMed  Google Scholar 

  • Smith T, Groom A, Zhu B, Turski L (2000) Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat Med 6:62–66

    Article  CAS  PubMed  Google Scholar 

  • Smith AW, Das A, Guyton MK, Ray SW, Rohrer B, Banik NL (2011) Calpain inhibition attenuates apoptosis of retinal ganglion cells in acute optic neuritis. Invest Ophthalmol Vis Sci 52:4935–4941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Srinivasan R, Sailasuta N, Hurd R, Nelson S, Pelletier D (2005) Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T. Brain 128:1016–1025

    Article  PubMed  Google Scholar 

  • Starkov AA, Chinopoulos C, Fiskum G (2004) Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium 36:257–264

    Article  CAS  PubMed  Google Scholar 

  • Stover JF, Pleines UE, Morganti-Kossmann MC, Kossmann T, Lowitzsch K, Kempski OS (1997) Neurotransmitters in cerebrospinal fluid reflect pathological activity. Eur J Clin Invest 27:1038–1043

    Article  CAS  PubMed  Google Scholar 

  • Stys PK, Ransom BR, Waxman SG, Davis PK (1990) Role of extracellular calcium in anoxic injury of mammalian central white matter. Proc Natl Acad Sci U S A 87:4212–4216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stys PK, Waxman SG, Ransom BR (1992) Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na+−Ca2+ exchanger. J Neurosci 12:430–439

    CAS  PubMed  Google Scholar 

  • Thayer SA, Usachev YM, Pottorf WJ (2002) Modulating Ca2+ clearance from neurons. Front Biosci 7:D1255–D1279

    Article  CAS  PubMed  Google Scholar 

  • Tokuhara N, Namiki K, Uesugi M, Miyamoto C, Ohgoh M, Ido K, Yoshinaga T, Yamauchi T, Kuromitsu J, Kimura S, Miyamoto N, Kasuya Y (2010) N-type calcium channel in the pathogenesis of experimental autoimmune encephalomyelitis. J Biol Chem 285:33294–33306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van der Valk P, Amor S (2009) Preactive lesions in multiple sclerosis. Curr Opin Neurol 22:207–213

    PubMed  Google Scholar 

  • Vergo S, Craner MJ, Etzensperger R, Attfield K, Friese MA, Newcombe J, Esiri M, Fugger L (2011) Acid-sensing ion channel 1 is involved in both axonal injury and demyelination in multiple sclerosis and its animal model. Brain 134:571–584

    Article  PubMed  Google Scholar 

  • Villa PG, Henzel WJ, Sensenbrenner M, Henderson CE, Pettmann B (1998) Calpain inhibitors, but not caspase inhibitors, prevent actin proteolysis and DNA fragmentation during apoptosis. J Cell Sci 111:713–722

    CAS  PubMed  Google Scholar 

  • Wallström E, Diener P, Ljungdahl A, Khademi M, Nilsson CG, Olsson T (1996) Memantine abrogates neurological deficits, but not CNS inflammation, in Lewis rat experimental autoimmune encephalomnyelitis. J Neurol Sci 137:89–96

    Article  PubMed  Google Scholar 

  • Waxman SG (2008) Mechanisms of disease: sodium channels and neuroprotection in multiple sclerosis—current status. Nat Clin Pract Neurol 4:159–170

    Article  CAS  PubMed  Google Scholar 

  • Werner P, Pitt D, Raine CS (2001) Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Ann Neurol 50:169–180

    Article  CAS  PubMed  Google Scholar 

  • Woods NK, Padmanabhan J (2012) Neuronal calcium signalling and Alzheimer’s disease. Adv Exp Med Biol 740:1193–1217

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Sucher NJ, Lipton SA (1995) Co-expression of AMPA/kainate receptor-operated channels with high and low Ca2+ permeability in signle rat retinal ganglion cells. Neuroscience 67:177–188

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricarda Diem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fairless, R., Williams, S.K. & Diem, R. Dysfunction of neuronal calcium signalling in neuroinflammation and neurodegeneration. Cell Tissue Res 357, 455–462 (2014). https://doi.org/10.1007/s00441-013-1758-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1758-8

Keywords

Navigation