Skip to main content

Advertisement

Log in

The matriptase-prostasin proteolytic cascade in epithelial development and pathology

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The type II transmembrane serine protease matriptase has an essential role in the integrity and function of multiple epithelial tissues. In the epidermis, matriptase activates the glycosylphosphatidylinositol (GPI) anchored membrane serine protease prostasin to initiate a proteolytic cascade that is required for the development of the stratum corneum barrier function. Accordingly, mice deficient for matriptase phenocopy mice deficient for epidermal prostasin and present with impaired corneocyte differentiation, imparied lipid matrix formation, loss of profilaggrin processing and loss of tight junction formation and function. Together, these defects lead to a compromised epidermal barrier and result in fatal dehydration during the neonatal period. Proteolytic activity of the matriptase-prostasin cascade is regulated in the epidermis via inhibition by the Kunitz-type serine protease inhibitor hepatocyte growth factor activator inhibitor-1 (HAI-1). Importantly, targeted post-natal ablation of matriptase in mice perturbs the function of multiple adult tissues, indicating an ongoing requirement for matriptase proteolysis in the maintenance of diverse types of epithelia. Impaired matriptase proteolytic activity has been linked to human Autosomal Recessive Icthyosis with Hypotrichosis (ARIH), whereas aberrant matriptase activity has been implicated in Netherton’s Syndrome. This review will summarize information pertaining to the role of matriptase in epithelial biology and will discuss recent advancements in our understanding of how matriptase activity is regulated and the down-stream effectors of matriptase proteolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adachi M, Kitamura K, Miyoshi T, Narikiyo T, Iwashita K, Shiraishi N, Nonoguchi H, Tomita K (2001) Activation of epithelial sodium channels by prostasin in Xenopus Oocytes. J Am Soc Nephrol 12:1114–21

    PubMed  CAS  Google Scholar 

  • Alef T, Torres S, Hausser I, Metze D, Tursen U, Lestringant GG, Hennies HC (2009) Ichthyosis, follicular atrophoderma, and hypotrichosis caused by mutations in ST14 is associated with impaired profilaggrin processing. J Invest Dermatol 129:862–9

    Article  PubMed  CAS  Google Scholar 

  • Basel-Vanagaite L, Attia R, Ishida-Yamamoto A, Rainshtein L, Ben Amitai D, Lurie R, Pasmanik-Chor M, Indelman M, Zvulunov A, Saban S, Magal N, Sprecher E, Shohat M (2007) Autosomal recessive ichthyosis with hypotrichosis caused by a mutation in ST14, encoding type II transmembrane serine protease matriptase. Am J Hum Genet 80(3):467–77

    Article  PubMed  CAS  Google Scholar 

  • Beliveau F, Desilets A, Leduc R (2009) Probing the substrate specificities of matriptase, matriptase-2, hepsin and DESC1 with internally quenched fluorescent peptides. FEBS J 276:2213–26

    Article  PubMed  CAS  Google Scholar 

  • Bitoun E, Chavanas S, Irvine AD, Lonie L, Bodemer C, Paradisi M, Hamel-Teillac D, Ansai S, Mitsuhashi Y, Taieb A, de Prost Y, Zambruno G, Harper JI, Hovnanian A (2002) Netherton syndrome: disease expression and spectrum of SPINK5 mutations in 21 families. J Invest Dermatol 118:352–61

    Article  PubMed  CAS  Google Scholar 

  • Bruns JB, Carattino MD, Sheng S, Maarouf AB, Weisz OA, Pilewski JM, Hughey RP, Kleyman TR (2007) Epithelial Na+ channels are fully activated by furin- and prostasin-dependent release of an inhibitory peptide from the gamma-subunit. J Biol Chem 282(9):6153–60

    Article  PubMed  CAS  Google Scholar 

  • Bugge TH, Antalis TM, Wu Q (2009) Type II transmembrane serine proteases. J Biol Chem 284:23177–81

    Article  PubMed  CAS  Google Scholar 

  • Buzza MS, Netzel-Arnett S, Shea-Donohue T, Zhao A, Lin CY, List K, Szabo R, Fasano A, Bugge TH, Antalis TM (2010) Membrane-anchored serine protease matriptase regulates epithelial barrier formation and permeability in the intestine. Proc Natl Acad Sci USA 107:4200–5

    Article  PubMed  CAS  Google Scholar 

  • Chen LM, Hodge GB, Guarda LA, Welch JL, Greenberg NM, Chai KX (2001a) Down-regulation of prostasin serine protease: a potential invasion suppressor in prostate cancer. Prostate 48:93–103

    Article  PubMed  CAS  Google Scholar 

  • Chen LM, Skinner ML, Kauffman SW, Chao J, Chao L, Thaler CD, Chai KX (2001b) Prostasin is a glycosylphosphatidylinositol-anchored active serine protease. J Biol Chem 276:21434–42

    Article  PubMed  CAS  Google Scholar 

  • Chen CJ, Wu BY, Tsao PI, Chen CY, Wu MH, Chan YL, Lee HS, Johnson MD, Eckert RL, Chen YW, Chou F, Wang JK, Lin CY (2010a) Increased matriptase zymogen activation in inflammatory skin disorders. Am J Physiol Cell Physiol

  • Chen YW, Wang JK, Chou FP, Chen CY, Rorke EA, Chen LM, Chai KX, Eckert RL, Johnson MD, Lin CY (2010b) Regulation of the matriptase-prostasin cell surface proteolytic cascade by hepatocyte growth factor activator inhibitor-1 during epidermal differentiation. J Biol Chem 285:31755–62

    Article  PubMed  CAS  Google Scholar 

  • Clark EB, Jovov B, Rooj AK, Fuller CM, Benos DJ (2010) Proteolytic cleavage of human acid-sensing ion channel 1 by the serine protease matriptase. J Biol Chem 285:27130–43

    Article  PubMed  CAS  Google Scholar 

  • Dale BA, Holbrook KA, Steinert PM (1978) Assembly of stratum corneum basic protein and keratin filaments in macrofibrils. Nature 276:729–31

    Article  PubMed  CAS  Google Scholar 

  • Deraison C, Bonnart C, Lopez F, Besson C, Robinson R, Jayakumar A, Wagberg F, Brattsand M, Hachem JP, Leonardsson G, Hovnanian A (2007) LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. Mol Biol Cell 18:3607–19

    Article  PubMed  CAS  Google Scholar 

  • Descargues P, Deraison C, Bonnart C, Kreft M, Kishibe M, Ishida-Yamamoto A, Elias P, Barrandon Y, Zambruno G, Sonnenberg A, Hovnanian A (2005) Spink5-deficient mice mimic Netherton syndrome through degradation of desmoglein 1 by epidermal protease hyperactivity. Nat Genet 37:56–65

    PubMed  CAS  Google Scholar 

  • Di Cera E (2009) Serine proteases. IUBMB Life 61:510–5

    Article  PubMed  Google Scholar 

  • Fan B, Brennan J, Grant D, Peale F, Rangell L, Kirchhofer D (2007) Hepatocyte growth factor activator inhibitor-1 (HAI-1) is essential for the integrity of basement membranes in the developing placental labyrinth. Dev Biol 303:222–30

    Article  PubMed  CAS  Google Scholar 

  • Friis S, Godiksen S, Bornholdt J, Selzer-Plon J, Rasmussen HB, Bugge TH, Lin CY, Vogel LK (2011) Transport via the transcytotic pathway makes prostasin available as a substrate for matriptase. J Biol Chem 286:5793–802

    Article  PubMed  CAS  Google Scholar 

  • Hewett DR, Simons AL, Mangan NE, Jolin HE, Green SM, Fallon PG, McKenzie AN (2005) Lethal, neonatal ichthyosis with increased proteolytic processing of filaggrin in a mouse model of Netherton syndrome. Hum Mol Genet 14:335–46

    Article  PubMed  CAS  Google Scholar 

  • Hooper JD, Nicol DL, Dickinson JL, Eyre HJ, Scarman AL, Normyle JF, Stuttgen MA, Douglas ML, Loveland KA, Sutherland GR, Antalis TM (1999) Testisin, a new human serine proteinase expressed by premeiotic testicular germ cells and lost in testicular germ cell tumors. Cancer Res 59:3199–205

    PubMed  CAS  Google Scholar 

  • Hooper JD, Clements JA, Quigley JP, Antalis TM (2001) Type II transmembrane serine proteases. Insights into an emerging class of cell surface proteolytic enzymes. J Biol Chem 276:857–60

    Article  PubMed  CAS  Google Scholar 

  • Kim C, Cho Y, Kang CH, Kim MG, Lee H, Cho EG, Park D (2005) Filamin is essential for shedding of the transmembrane serine protease, epithin. EMBO Rep 6:1045–51

    Article  PubMed  CAS  Google Scholar 

  • Lee SL, Dickson RB, Lin CY (2000) Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J Biol Chem 275:36720–5

    Article  PubMed  CAS  Google Scholar 

  • Lee JW, Yong Song S, Choi JJ, Lee SJ, Kim BG, Park CS, Lee JH, Lin CY, Dickson RB, Bae DS (2005) Increased expression of matriptase is associated with histopathologic grades of cervical neoplasia. Hum Pathol 36:626–33

    Article  PubMed  CAS  Google Scholar 

  • Lee MS, Tseng IC, Wang Y, Kiyomiya K, Johnson MD, Dickson RB, Lin CY (2007) Autoactivation of matriptase in vitro: requirement for biomembrane and LDL receptor domain. Am J Physiol Cell Physiol 293:C95–105

    Article  PubMed  CAS  Google Scholar 

  • Leyvraz C, Charles RP, Rubera I, Guitard M, Rotman S, Breiden B, Sandhoff K, Hummler E (2005) The epidermal barrier function is dependent on the serine protease CAP1/Prss8. J Cell Biol 170:487–96

    Article  PubMed  CAS  Google Scholar 

  • Lin CY, Anders J, Johnson M, Dickson RB (1999) Purification and characterization of a complex containing matriptase and a Kunitz-type serine protease inhibitor from human milk. J Biol Chem 274:18237–42

    Article  PubMed  CAS  Google Scholar 

  • List K, Haudenschild CC, Szabo R, Chen W, Wahl SM, Swaim W, Engelholm LH, Behrendt N, Bugge TH (2002) Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis. Oncogene 21:3765–79

    Article  PubMed  CAS  Google Scholar 

  • List K, Szabo R, Wertz PW, Segre J, Haudenschild CC, Kim SY, Bugge TH (2003) Loss of proteolytically processed filaggrin caused by epidermal deletion of Matriptase/MT-SP1. J Cell Biol 163(4):901–10

    Article  PubMed  CAS  Google Scholar 

  • List K, Szabo R, Molinolo A, Sriuranpong V, Redeye V, Murdock T, Burke B, Nielsen BS, Gutkind JS, Bugge TH (2005) Deregulated matriptase causes ras-independent multistage carcinogenesis and promotes ras-mediated malignant transformation. Genes Dev 19(16):1934–50

    Article  PubMed  CAS  Google Scholar 

  • List K, Szabo R, Molinolo A, Nielsen BS, Bugge TH (2006) Delineation of matriptase protein expression by enzymatic gene trapping suggests diverging roles in barrier function, hair formation, and squamous cell carcinogenesis. Am J Pathol 168:1513–25

    Article  PubMed  CAS  Google Scholar 

  • List K, Currie B, Scharschmidt TC, Szabo R, Shireman J, Molinolo A, Cravatt BF, Segre J, Bugge TH (2007a) Autosomal ichthyosis with hypotrichosis syndrome displays low matriptase proteolytic activity and is phenocopied in ST14 hypomorphic mice. J Biol Chem 282:36714–23

    Article  PubMed  CAS  Google Scholar 

  • List K, Hobson JP, Molinolo A, Bugge TH (2007b) Co-localization of the channel activating protease prostasin/(CAP1/PRSS8) with its candidate activator, matriptase. J Cell Physiol 213:237–45

    Article  PubMed  CAS  Google Scholar 

  • List K, Kosa P, Szabo R, Bey AL, Wang CB, Molinolo A, Bugge TH (2009) Epithelial integrity is maintained by a matriptase-dependent proteolytic pathway. Am J Pathol 175:1453–63

    Article  PubMed  CAS  Google Scholar 

  • Markova NG, Marekov LN, Chipev CC, Gan SQ, Idler WW, Steinert PM (1993) Profilaggrin is a major epidermal calcium-binding protein. Mol Cell Biol 13:613–25

    PubMed  CAS  Google Scholar 

  • Mildner M, Jin J, Eckhart L, Kezic S, Gruber F, Barresi C, Stremnitzer C, Buchberger M, Mlitz V, Ballaun C, Sterniczky B, Fodinger D, Tschachler E (2010) Knockdown of filaggrin impairs diffusion barrier function and increases UV sensitivity in a human skin model. J Invest Dermatol 130:2286–94

    Article  PubMed  CAS  Google Scholar 

  • Nagaike K, Kawaguchi M, Takeda N, Fukoshima T, Sawaguch IA, Kohama K, Setoyama M, Kataoka H (2008) Defect of hepatocyte growth factor activator inhibitor type 1/serine protease inhibior. Kunitz type 1 (Hai-1/Spint1) leads to ichthyosis-like condition and abnormal hair development in mice. Am J Pathol 173:1–12

    Article  Google Scholar 

  • Netzel-Arnett S, Currie BM, Szabo R, Lin CY, Chen LM, Chai KX, Antalis TM, Bugge TH, List K (2006) Evidence for a matriptase-prostasin proteolytic cascade regulating terminal epidermal differentiation. J Biol Chem 281:32941–5

    Article  PubMed  CAS  Google Scholar 

  • Oberst MD, Johnson MD, Dickson RB, Lin CY, Singh B, Stewart M, Williams A, al-Nafussi A, Smyth JF, Gabra H, Sellar GC (2002) Expression of the serine protease matriptase and its inhibitor HAI-1 in epithelial ovarian cancer: correlation with clinical outcome and tumor clinicopathological parameters. Clin Cancer Res 8:1101–7

    PubMed  CAS  Google Scholar 

  • Oberst MD, Williams CA, Dickson RB, Johnson MD, Lin CY (2003) The activation of matriptase requires its noncatalytic domains, serine protease domain, and its cognate inhibitor. J Biol Chem 278(29):26773–9

    Article  PubMed  CAS  Google Scholar 

  • Oberst MD, Chen LY, Kiyomiya K, Williams CA, Lee MS, Johnson MD, Dickson RB, Lin CY (2005) HAI-1 regulates activation and expression of matriptase, a membrane-bound serine protease. Am J Physiol Cell Physiol 289:C462–70

    Article  PubMed  CAS  Google Scholar 

  • Ovaere P, Lippens S, Vandenabeele P, Declercq W (2009) The emerging roles of serine protease cascades in the epidermis. Trends Biochem Sci 34:453–63

    Article  PubMed  CAS  Google Scholar 

  • Pearton DJ, Dale BA, Presland RB (2002) Functional analysis of the profilaggrin N-terminal peptide: identification of domains that regulate nuclear and cytoplasmic distribution. J Invest Dermatol 119:661–9

    Article  PubMed  CAS  Google Scholar 

  • Puente XS, Gutierrez-Fernandez A, Ordonez GR, Hillier LW, Lopez-Otin C (2005) Comparative genomic analysis of human and chimpanzee proteases. Genomics 86:638–47

    Article  PubMed  CAS  Google Scholar 

  • Resing KA, Johnson RS, Walsh KA (1993) Characterization of protease processing sites during conversion of rat profilaggrin to filaggrin. Biochemistry 32:10036–45

    Article  PubMed  CAS  Google Scholar 

  • Saleem M, Adhami VM, Zhong W, Longley BJ, Lin CY, Dickson RB, Reagan-Shaw S, Jarrard DF, Mukhtar H (2006) A novel biomarker for staging human prostate adenocarcinoma: overexpression of matriptase with concomitant loss of its inhibitor, hepatocyte growth factor activator inhibitor-1. Cancer Epidemiol Biomarkers Prev 15:217–27

    Article  PubMed  CAS  Google Scholar 

  • Sales KU, Masedunskas A, Bey AL, Rasmussen AL, Weigert R, List K, Szabo R, Overbeek PA, Bugge TH (2010) Matriptase initiates activation of epidermal pro-kallikrein and disease onset in a mouse model of Netherton syndrome. Nat Genet 42:676–83

    Article  PubMed  CAS  Google Scholar 

  • Sambuy Y, De Angelis I, Ranaldi G, Scarino ML, Stammati A, Zucco F (2005) The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol Toxicol 21:1–26

    Article  PubMed  CAS  Google Scholar 

  • Scharschmidt TC, List K, Grice EA, Szabo R, Renaud G, Lee CC, Wolfsberg TG, Bugge TH, Segre JA (2009) Matriptase-deficient mice exhibit ichthyotic skin with a selective shift in skin microbiota. J Invest Dermatol 129:2435–42

    Article  PubMed  CAS  Google Scholar 

  • Schechter NM, Choi EJ, Wang ZM, Hanakawa Y, Stanley JR, Kang Y, Clayman GL, Jayakumar A (2005) Inhibition of human kallikreins 5 and 7 by the serine protease inhibitor lympho-epithelial Kazal-type inhibitor (LEKTI). Biol Chem 386:1173–84

    Article  PubMed  CAS  Google Scholar 

  • Shipway A, Danahay H, Williams JA, Tully DC, Backes BJ, Harris JL (2004) Biochemical characterization of prostasin, a channel activating protease. Biochem Biophys Res Commun 324:953–63

    Article  PubMed  CAS  Google Scholar 

  • Smith DL, Smith JG, Wong SW, deShazo RD (1995a) Netherton's syndrome. Br J Dermatol 133:153–4

    Article  PubMed  CAS  Google Scholar 

  • Smith DL, Smith JG, Wong SW, deShazo RD (1995b) Netherton's syndrome: a syndrome of elevated IgE and characteristic skin and hair findings. J Allergy Clin Immunol 95:116–23

    Article  PubMed  CAS  Google Scholar 

  • Smith FJ, Irvine AD, Terron-Kwiatkowski A, Sandilands A, Campbell LE, Zhao Y, Liao H, Evans AT, Goudie DR, Lewis-Jones S, Arseculeratne G, Munro CS, Sergeant A, O'Regan G, Bale SJ, Compton JG, DiGiovanna JJ, Presland RB, Fleckman P, McLean WH (2006) Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat Genet 38:337–42

    Article  PubMed  CAS  Google Scholar 

  • Steinert PM, North AC, Parry DA (1994) Structural features of keratin intermediate filaments. J Invest Dermatol 103:19S–24S

    Article  PubMed  CAS  Google Scholar 

  • Szabo R, Bugge TH (2008) Type II transmembrane serine proteases in development and disease. Int J Biochem Cell Biol 40:1297–316

    Article  PubMed  CAS  Google Scholar 

  • Szabo R, Wu Q, Dickson RB, Netzel-Arnett S, Antalis TM, Bugge TH (2003) Type II transmembrane serine proteases. Thromb Haemost 90:185–93

    PubMed  CAS  Google Scholar 

  • Szabo R, Molinolo A, List K, Bugge TH (2007) Matriptase inhibition by hepatocyte growth factor activator inhibitor-1 is essential for placental development. Oncogene 26:1546–56

    Article  PubMed  CAS  Google Scholar 

  • Szabo R, Kosa P, List K, Bugge TH (2009) Loss of matriptase suppression underlies spint1 mutation-associated ichthyosis and postnatal lethality. Am J Pathol 174:2015–22

    Article  PubMed  CAS  Google Scholar 

  • Szabo R, Rasmussen AL, Moyer AB, Kosa P, Schafer JM, Molinolo AA, Gutkind JS, Bugge TH (2011) c-Met-induced epithelial carcinogenesis is initiated by the serine protease matriptase. Oncogene (in press)

  • Takeuchi T, Harris JL, Huang W, Yan KW, Coughlin SR, Craik CS (2000) Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J Biol Chem 275:26333–42

    Article  PubMed  CAS  Google Scholar 

  • Tanimoto H, Shigemasa K, Tian X, Gu L, Beard JB, Sawasaki T, O'Brien TJ (2005) Transmembrane serine protease TADG-15 (ST14/Matriptase/MT-SP1): expression and prognostic value in ovarian cancer. Br J Cancer 92:278–83

    PubMed  CAS  Google Scholar 

  • Tong Z, Illek B, Bhagwandin VJ, Verghese GM, Caughey GH (2004) Prostasin, a membrane-anchored serine peptidase, regulates sodium currents in JME/CF15 cells, a cystic fibrosis airway epithelial cell line. Am J Physiol Lung Cell Mol Physiol 287:L928–35

    Article  PubMed  CAS  Google Scholar 

  • Tsai WC, Chu CH, Yu CP, Sheu LF, Chen A, Chiang H, Jin JS (2008) Matriptase and survivin expression associated with tumor progression and malignant potential in breast cancer of Chinese women: tissue microarray analysis of immunostaining scores with clinicopathological parameters. Dis Markers 24:89–99

    PubMed  CAS  Google Scholar 

  • Tseng IC, Xu H, Chou FP, Li G, Vazzano AP, Kao JP, Johnson MD, Lin CY (2010) Matriptase activation, an early cellular response to acidosis. J Biol Chem 285:3261–70

    Article  PubMed  CAS  Google Scholar 

  • Ustach CV, Huang W, Conley-LaComb MK, Lin CY, Che M, Abrams J, Kim HR (2010) A novel signaling axis of matriptase/PDGF-D/ß-PDGFR in human prostate cancer. Cancer Res 70(23):9631–40

    Article  PubMed  CAS  Google Scholar 

  • Vallet V, Chraibi A, Gaeggeler HP, Horisberger JD, Rossier BC (1997) An epithelial serine protease activates the amiloride-sensitive sodium channel. Nature 389:607–10

    Article  PubMed  CAS  Google Scholar 

  • Van Itallie CM, Anderson JM (2006) Claudins and epithelial paracellular transport. Annu Rev Physiol 68:403–429

    Article  PubMed  Google Scholar 

  • Vogel LK, Saebo M, Skjelbred CF, Abell K, Pedersen ED, Vogel U, Kure EH (2006) The ratio of Matriptase/HAI-1 mRNA is higher in colorectal cancer adenomas and carcinomas than corresponding tissue from control individuals. BMC Cancer 6:176

    Article  PubMed  Google Scholar 

  • Vuagniaux G, Vallet V, Jaeger NF, Pfister C, Bens M, Farman N, Courtois-Coutry N, Vandewalle A, Rossier BC, Hummler E (2000) Activation of the amiloride-sensitive epithelial sodium channel by the serine protease mCAP1 expressed in a mouse cortical collecting duct cell line. J Am Soc Nephrol 11(5):828–34

    PubMed  CAS  Google Scholar 

  • Vuagniaux G, Vallet V, Jaeger NF, Hummler E, Rossier BC (2002) Synergistic activation of ENaC by three membrane-bound channel-activating serine proteases (mCAP1, mCAP2, and mCAP3) and serum- and glucocorticoid-regulated kinase (Sgk1) in Xenopus Oocytes. J Gen Physiol 120:191–201

    Article  PubMed  CAS  Google Scholar 

  • Wang JK, Lee MS, Tseng IC, Chou FP, Chen YW, Fulton A, Lee HS, Chen CJ, Johnson MD, Lin CY (2009) Polarized epithelial cells secrete matriptase as a consequence of zymogen activation and HAI-1-mediated inhibition. Am J Physiol Cell Physiol 297:C459–70

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Liang D, Koch PJ, Hohl D, Kheradmand F, Overbeek PA (2004) Epidermal detachment, desmosomal dissociation, and destabilization of corneodesmosin in Spink5-/- mice. Genes Dev 18:2354–8

    Article  PubMed  CAS  Google Scholar 

  • Yu G, Swiston J, Young D (1994) Comparison of human CAP and CAP2, homologs of the yeast adenylyl cyclase-associated proteins. J Cell Sci 107(Pt 6):1671–8

    PubMed  CAS  Google Scholar 

  • Yu JX, Chao L, Chao J (1995) Molecular cloning, tissue-specific expression, and cellular localization of human prostasin mRNA. J Biol Chem 270:13483–9

    PubMed  CAS  Google Scholar 

  • Zhang D, Karunaratne S, Kessler M, Mahony D, Rothnagel JA (2002) Characterization of mouse profilaggrin: evidence for nuclear engulfment and translocation of the profilaggrin B-domain during epidermal differentiation. J Invest Dermatol 119:905–12

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by start-up funds for KL from the Department of Pharmacology, Wayne State School of Medicine and the Barbara Ann Karmanos Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin List.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, G.S., List, K. The matriptase-prostasin proteolytic cascade in epithelial development and pathology. Cell Tissue Res 351, 245–253 (2013). https://doi.org/10.1007/s00441-012-1348-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1348-1

Keywords

Navigation