Skip to main content
Log in

Synapse development: still looking for the forest, still lost in the trees

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Synapse development in the vertebrate central nervous system is a highly orchestrated process occurring not only during early stages of brain development, but also (to a lesser extent) in the mature nervous system. During development, the formation of synapses is intimately linked to the differentiation of neuronal cells, the extension of their axons and dendrites, and the course wiring of the nervous system. Subsequently, the stabilization, elimination, and strengthening of synaptic contacts is coupled to the refinement of axonal and dendritic arbors, to the establishment of functionally meaningful connections, and probably also to the day-to-day acquisition, storage, and retrieval of memories, higher order thought processes, and behavioral patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abe K, Chisaka O, Van Roy F, Takeichi M (2004) Stability of dendritic spines and synaptic contacts is controlled by alpha N-catenin. Nat Neurosci 7:357–363

    Article  PubMed  CAS  Google Scholar 

  • Ahmari SE, Buchanan J, Smith SJ (2000) Assembly of presynaptic active zones from cytoplasmic transport packets. Nat Neurosci 3:445–451

    Article  PubMed  CAS  Google Scholar 

  • Akaaboune M, Culican SM, Turney SG, Lichtman JW (1999) Rapid and reversible effects of activity on acetylcholine receptor density at the neuromuscular junction in vivo. Science 286:503–507

    Article  PubMed  CAS  Google Scholar 

  • Akaaboune M, Grady RM, Turney S, Sanes JR, Lichtman JW (2002) Neurotransmitter receptor dynamics studied in vivo by reversible photo-unbinding of fluorescent ligands. Neuron 34:865–876

    Article  PubMed  CAS  Google Scholar 

  • Alsina B, Vu T, Cohen-Cory S (2001) Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF. Nat Neurosci 4:1093–1101

    Article  PubMed  CAS  Google Scholar 

  • Bauerfeind R, Huttner WB (1993) Biogenesis of constitutive secretory vesicles, secretory granules and synaptic vesicles. Curr Opin Cell Biol 5:628–635

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ari Y (2002) Excitatory actions of GABA during development: the nature of the nurture. Nat Rev Neurosci 3:728–739

    Article  PubMed  CAS  Google Scholar 

  • Bennett MV (2000) Electrical synapses, a personal perspective (or history). Brain Res Brain Res Rev 32:16–28

    Article  PubMed  CAS  Google Scholar 

  • Bennett MV, Zukin RS (2004) Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41:495–511

    Article  PubMed  CAS  Google Scholar 

  • Biederer T (2006) Bioinformatic characterization of the SynCAM family of immunoglobulin-like domain-containing adhesion molecules. Genomics 87:139–150

    Article  PubMed  CAS  Google Scholar 

  • Biederer T, Sara Y, Mozhayeva M, Atasoy D, Liu X, Kavalali ET, Sudhof TC (2002) SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297:1525–1531

    Article  PubMed  CAS  Google Scholar 

  • Boucard AA, Chubykin AA, Comoletti D, Taylor P, Sudhof TC (2005) A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to alpha- and beta-neurexins. Neuron 48:229–236

    Article  PubMed  CAS  Google Scholar 

  • Bozdagi O, Valcin M, Poskanzer K, Tanaka H, Benson DL (2004) Temporally distinct demands for classic cadherins in synapse formation and maturation. Mol Cell Neurosci 27:509–521

    Article  PubMed  CAS  Google Scholar 

  • Bresler T, Ramati Y, Zamorano PL, Zhai R, Garner CC, Ziv NE (2001) The dynamics of SAP90/PSD-95 recruitment to new synaptic junctions. Mol Cell Neurosci 18:149–167

    Article  PubMed  CAS  Google Scholar 

  • Bresler T, Shapira M, Boeckers T, Dresbach T, Futter M, Garner CC, Rosenblum K, Gundelfinger ED, Ziv NE (2004) Postsynaptic density assembly is fundamentally different from presynaptic active zone assembly. J Neurosci 24:1507–1520

    Article  PubMed  CAS  Google Scholar 

  • Bruzzoni X, Dermietzel Y (2006) Electrical synapses: connexins and pannexins. Cell Tissue Res (DOI 10.1007/s00441-006-0287-0, this issue)

  • Buchanan J, Sun YA, Poo MM (1989) Studies of nerve-muscle interactions in Xenopus cell culture: fine structure of early functional contacts. J Neurosci 9:1540–1554

    PubMed  CAS  Google Scholar 

  • Chen BE, Kondo M, Garnier A, Watson FL, Puettmann-Holgado R, Lamar DR, Schmucker D (2006) The molecular diversity of Dscam is functionally required for neuronal wiring specificity in Drosophila. Cell 125:607–620

    Article  PubMed  CAS  Google Scholar 

  • Chi P, Greengard P, Ryan TA (2001) Synapsin dispersion and reclustering during synaptic activity. Nat Neurosci 4:1187–1193

    Article  PubMed  CAS  Google Scholar 

  • Chih B, Afridi SK, Clark L, Scheiffele P (2004) Disorder-associated mutations lead to functional inactivation of neuroligins. Hum Mol Genet 13:1471–1477

    Article  PubMed  CAS  Google Scholar 

  • Chih B, Engelman H, Scheiffele P (2005) Control of excitatory and inhibitory synapse formation by neuroligins. Science 307:1324–1328

    Article  PubMed  CAS  Google Scholar 

  • Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF, Bornstein P, Barres BA (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120:421–433

    Article  PubMed  CAS  Google Scholar 

  • Cline HT (2001) Dendritic arbor development and synaptogenesis. Curr Opin Neurobiol 11:118–126

    Article  PubMed  CAS  Google Scholar 

  • Colicos MA, Collins BE, Sailor MJ, Goda Y (2001) Remodeling of synaptic actin induced by photoconductive stimulation. Cell 107:605–616

    Article  PubMed  CAS  Google Scholar 

  • Constantine-Paton M, Cline HT, Debski E (1990) Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. Annu Rev Neurosci 13:129–154

    Article  PubMed  CAS  Google Scholar 

  • Craig AM, Graf ER, Linhoff MW (2006) How to build a central synapse: clues from cell culture. Trends Neurosci 29:8–20

    Article  PubMed  CAS  Google Scholar 

  • Dailey ME, Smith SJ (1996) The dynamics of dendritic structure in developing hippocampal slices. J Neurosci 16:2983–2994

    PubMed  CAS  Google Scholar 

  • Dalva MB, Takasu MA, Lin MZ, Shamah SM, Hu L, Gale NW, Greenberg ME (2000) EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103:945–956

    Article  PubMed  CAS  Google Scholar 

  • Darcy KJ, Staras K, Collinson LM, Goda Y (2006) Constitutive sharing of recycling synaptic vesicles between presynaptic boutons. Nat Neurosci 9:315–321

    Article  PubMed  CAS  Google Scholar 

  • Dean C, Dresbach T (2006) Neuroligins and neurexins: linking cell adhesion, synapse formation and cognitive function. Trends Neurosci 29:21–29

    Article  PubMed  CAS  Google Scholar 

  • Dean C, Scholl FG, Choih J, DeMaria S, Berger J, Isacoff E, Scheiffele P (2003) Neurexin mediates the assembly of presynaptic terminals. Nat Neurosci 6:708–716

    Article  PubMed  CAS  Google Scholar 

  • Dityatev A, Schachner M (2006) The extracellular matrix and synapses. Cell Tissue Res (DOI 10.1007/s00441-006-0217-1, this issue)

  • Ebihara T, Kawabata I, Usui S, Sobue K, Okabe S (2003) Synchronized formation and remodeling of postsynaptic densities: long-term visualization of hippocampal neurons expressing postsynaptic density proteins tagged with green fluorescent protein. J Neurosci 23:2170–2181

    PubMed  CAS  Google Scholar 

  • Ehlers MD (2003) Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci 6:231–242

    Article  PubMed  CAS  Google Scholar 

  • Fiala JC, Feinberg M, Popov V, Harris KM (1998) Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J Neurosci 18:8900–8911

    PubMed  CAS  Google Scholar 

  • Fletcher TL, De Camilli P, Banker G (1994) Synaptogenesis in hippocampal cultures: evidence indicating that axons and dendrites become competent to form synapses at different stages of neuronal development. J Neurosci 14:6695–6706

    PubMed  CAS  Google Scholar 

  • Foeller E, Feldman DE (2004) Synaptic basis for developmental plasticity in somatosensory cortex. Curr Opin Neurobiol 14:89–95

    Article  PubMed  CAS  Google Scholar 

  • Friedman HV, Bresler T, Garner CC, Ziv NE (2000) Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment. Neuron 27:57–69

    Article  PubMed  CAS  Google Scholar 

  • Gardner JM, Fambrough DM (1979) Acetylcholine receptor degradation measured by density labeling: effects of cholinergic ligands and evidence against recycling. Cell 16:661–674

    Article  PubMed  CAS  Google Scholar 

  • Garner CC, Zhai RG, Gundelfinger ED, Ziv NE (2002) Molecular mechanisms of CNS synaptogenesis. Trends Neurosci 25:243–251

    Article  PubMed  CAS  Google Scholar 

  • Gerrow K, Romorini S, Nabi SM, Colicos MA, Sala C, El-Husseini A (2006) A preformed complex of postsynaptic proteins is involved in excitatory synapse development. Neuron 49:547–562

    Article  PubMed  CAS  Google Scholar 

  • Goda Y, Davis GW (2003) Mechanisms of synapse assembly and disassembly. Neuron 40:243–264

    Article  PubMed  CAS  Google Scholar 

  • Graf ER, Zhang X, Jin SX, Linhoff MW, Craig AM (2004) Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119:1013–1026

    Article  PubMed  CAS  Google Scholar 

  • Graf ER, Kang Y, Hauner AM, Craig AM (2006) Structure function and splice site analysis of the synaptogenic activity of the neurexin-1beta LNS domain. J Neurosci 26:4256–4265

    Article  PubMed  CAS  Google Scholar 

  • Grant SG (2006) The synapse proteome and phosphoproteome: a new paradigm for synapse biology. Biochem Soc Trans 34:59–63

    Article  PubMed  CAS  Google Scholar 

  • Gray EG (1963) Electron microscopy of presynaptic organelles of the spinal cord. J Anat 97:101–106

    PubMed  CAS  Google Scholar 

  • Groc L, Gustafsson B, Hanse E (2006) AMPA signalling in nascent glutamatergic synapses: there and not there! Trends Neurosci 29:132–139

    Article  PubMed  CAS  Google Scholar 

  • Hall AC, Lucas FR, Salinas PC (2000) Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell 100:525–535

    Article  PubMed  CAS  Google Scholar 

  • Harms KJ, Craig AM (2005) Synapse composition and organization following chronic activity blockade in cultured hippocampal neurons. J Comp Neurol 490:72–84

    Article  PubMed  CAS  Google Scholar 

  • Holtmaat AJ, Trachtenberg JT, Wilbrecht L, Shepherd GM, Zhang X, Knott GW, Svoboda K (2005) Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45:279–291

    Article  PubMed  CAS  Google Scholar 

  • Ichtchenko K, Hata Y, Nguyen T, Ullrich B, Missler M, Moomaw C, Sudhof TC (1995) Neuroligin 1: a splice site-specific ligand for beta-neurexins. Cell 81:435–443

    Article  PubMed  CAS  Google Scholar 

  • Iki J, Inoue A, Bito H, Okabe S (2005) Bi-directional regulation of postsynaptic cortactin distribution by BDNF and NMDA receptor activity. Eur J Neurosci 22:2985–2994

    Article  PubMed  Google Scholar 

  • Inoue A, Okabe S (2003) The dynamic organization of postsynaptic proteins: translocating molecules regulate synaptic function. Curr Opin Neurobiol 13:332–340

    Article  PubMed  CAS  Google Scholar 

  • Irie M, Hata Y, Takeuchi M, Ichtchenko K, Toyoda A, Hirao K, Takai Y, Rosahl TW, Sudhof TC (1997) Binding of neuroligins to PSD-95. Science 277:1511–1515

    Article  PubMed  CAS  Google Scholar 

  • Jontes JD, Phillips GR (2006) Selective stabilization and synaptic specificity: a new cell-biological model. Trends Neurosci 29:186–191

    Article  PubMed  CAS  Google Scholar 

  • Jontes JD, Buchanan J, Smith SJ (2000) Growth cone and dendrite dynamics in zebrafish embryos: early events in synaptogenesis imaged in vivo. Nat Neurosci 3:231–237

    Article  PubMed  CAS  Google Scholar 

  • Jordan BA, Fernholz BD, Boussac M, Xu C, Grigorean G, Ziff EB, Neubert TA (2004) Identification and verification of novel rodent postsynaptic density proteins. Mol Cell Proteomics 3:857–871

    Article  PubMed  CAS  Google Scholar 

  • Ju W, Morishita W, Tsui J, Gaietta G, Deerinck TJ, Adams SR, Garner CC, Tsien RY, Ellisman MH, Malenka RC (2004) Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nat Neurosci 7:244–253

    Article  PubMed  CAS  Google Scholar 

  • Kennedy MB (2000) Signal-processing machines at the postsynaptic density. Science 290:750–754

    Article  PubMed  CAS  Google Scholar 

  • Kennedy MJ, Ehlers MD (2006) Organelles and trafficking machinery for postsynaptic plasticity. Annu Rev Neurosci (in press)

  • Kim E, Sheng M (2004) PDZ domain proteins of synapses. Nat Rev Neurosci 5:771–781

    Article  PubMed  CAS  Google Scholar 

  • Korkotian E, Segal M (2001) Regulation of dendritic spine motility in cultured hippocampal neurons. J Neurosci 21:6115–6124

    PubMed  CAS  Google Scholar 

  • Krueger SR, Kolar A, Fitzsimonds RM (2003) The presynaptic release apparatus is functional in the absence of dendritic contact and highly mobile within isolated axons. Neuron 40:945–957

    Article  PubMed  CAS  Google Scholar 

  • Kummer TT, Misgeld T, Sanes JR (2006) Assembly of the postsynaptic membrane at the neuromuscular junction: paradigm lost. Curr Opin Neurobiol 16:74–82

    Article  PubMed  CAS  Google Scholar 

  • Lee CH, Herman T, Clandinin TR, Lee R, Zipursky SL (2001) N-cadherin regulates target specificity in the Drosophila visual system. Neuron 30:437–450

    Article  PubMed  CAS  Google Scholar 

  • Li K, Hornshaw MP, Minnen J van, Smalla KH, Gundelfinger ED, Smit AB (2005) Organelle proteomics of rat synaptic proteins: correlation-profiling by isotope-coded affinity tagging in conjunction with liquid chromatography-tandem mass spectrometry to reveal post-synaptic density specific proteins. J Proteome Res 4:725–733

    Article  PubMed  CAS  Google Scholar 

  • Liao D, Zhang X, O’Brien R, Ehlers MD, Huganir RL (1999) Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons. Nat Neurosci 2:37–43

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Zablow L, Kandel ER, Siegelbaum SA (1999) Cyclic AMP induces functional presynaptic boutons in hippocampal CA3-CA1 neuronal cultures. Nat Neurosci 2:24–30

    Article  PubMed  CAS  Google Scholar 

  • Malenka RC, Nicoll RA (1999) Long-term potentiation—a decade of progress? Science 285:1870–1874

    Article  PubMed  CAS  Google Scholar 

  • Marrs GS, Green SH, Dailey ME (2001) Rapid formation and remodeling of postsynaptic densities in developing dendrites. Nat Neurosci 4:1006–1013

    Article  PubMed  CAS  Google Scholar 

  • Martinez A, Soriano E (2005) Functions of ephrin/Eph interactions in the development of the nervous system: emphasis on the hippocampal system. Brain Res Brain Res Rev 49:211–226

    Article  PubMed  CAS  Google Scholar 

  • Matteoli M, Coco S, Schenk U, Verderio C (2004) Vesicle turnover in developing neurons: how to build a presynaptic terminal. Trends Cell Biol 14:133–140

    Article  PubMed  CAS  Google Scholar 

  • Matus A (1990) Microtubule-associated proteins and the determination of neuronal form. J Physiol (Paris) 84:134–137

    CAS  Google Scholar 

  • McLaughlin T, O’Leary DD (2005) Molecular gradients and development of retinotopic maps. Annu Rev Neurosci 28:327–355

    Article  PubMed  CAS  Google Scholar 

  • Meyer MP, Smith SJ (2006) Evidence from in vivo imaging that synaptogenesis guides the growth and branching of axonal arbors by two distinct mechanisms. J Neurosci 26:3604–3614

    Article  PubMed  CAS  Google Scholar 

  • Meyer MP, Niell CM, Smith SJ (2003) Brain imaging: how stable are synaptic connections? Curr Biol 13:R180–R182

    Article  PubMed  CAS  Google Scholar 

  • Missler M (2006) Synaptic cell adhesion molecules. Cell Tissue Res (DOI 10.1007/s00441-006-0267-4, this issue)

  • Missler M, Zhang W, Rohlmann A, Kattenstroth G, Hammer RE, Gottmann K, Sudhof TC (2003) Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis. Nature 423:939–948

    Article  PubMed  CAS  Google Scholar 

  • Miyata S, Mori Y, Fujiwara T, Ikenaka K, Matsuzaki S, Oono K, Katayama T, Tohyama M (2005) Local protein synthesis by BDNF is potentiated in hippocampal neurons exposed to ephrins. Brain Res Mol Brain Res 134:333–337

    Article  PubMed  CAS  Google Scholar 

  • Montgomery JM, Madison DV (2004) Discrete synaptic states define a major mechanism of synapse plasticity. Trends Neurosci 27:744–750

    Article  PubMed  CAS  Google Scholar 

  • Montgomery JM, Zamorano PL, Garner CC (2004) MAGUKs in synapse assembly and function: an emerging view. Cell Mol Life Sci 61:911–929

    Article  PubMed  CAS  Google Scholar 

  • Mozhayeva MG, Sara Y, Liu X, Kavalali ET (2002) Development of vesicle pools during maturation of hippocampal synapses. J Neurosci 22:654–665

    PubMed  CAS  Google Scholar 

  • Mueller VJ, Wienisch M, Nehring RB, Klingauf J (2004) Monitoring clathrin-mediated endocytosis during synaptic activity. J Neurosci 24:2004–2012

    Article  PubMed  CAS  Google Scholar 

  • Mundigl O, Matteoli M, Daniell L, Thomas-Reetz A, Metcalf A, Jahn R, De Camilli P (1993) Synaptic vesicle proteins and early endosomes in cultured hippocampal neurons: differential effects of brefeldin A in axon and dendrites. J Cell Biol 122:1207–1221

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Engler JA, Sheng M (2004a) The dynamic turnover and functional roles of alpha-actinin in dendritic spines. Neuropharmacology 47:734–745

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Futai K, Lashuel HA, Lo I, Okamoto K, Walz T, Hayashi Y, Sheng M (2004b) Quaternary structure, protein dynamics, and synaptic function of SAP97 controlled by L27 domain interactions. Neuron 44:453–467

    Article  PubMed  CAS  Google Scholar 

  • Niell CM (2006) Theoretical analysis of a synaptotropic dendrite growth mechanism. J Theor Biol (in press)

  • Niell CM, Meyer MP, Smith SJ (2004) In vivo imaging of synapse formation on a growing dendritic arbor. Nat Neurosci 7:254–260

    Article  PubMed  CAS  Google Scholar 

  • O’Brien RJ, Xu D, Petralia RS, Steward O, Huganir RL, Worley P (1999) Synaptic clustering of AMPA receptors by the extracellular immediate-early gene product Narp. Neuron 23:309–323

    Article  PubMed  CAS  Google Scholar 

  • O’Leary DD, McLaughlin T (2005) Mechanisms of retinotopic map development: Ephs, ephrins, and spontaneous correlated retinal activity. Prog Brain Res 147:43–65

    Article  PubMed  CAS  Google Scholar 

  • Okabe S, Miwa A, Okado H (2001a) Spine formation and correlated assembly of presynaptic and postsynaptic molecules. J Neurosci 21:6105–6114

    PubMed  CAS  Google Scholar 

  • Okabe S, Urushido T, Konno D, Okado H, Sobue K (2001b) Rapid redistribution of the postsynaptic density protein PSD-Zip45 (Homer 1c) and its differential regulation by NMDA receptors and calcium channels. J Neurosci 21:9561–9571

    PubMed  CAS  Google Scholar 

  • Peng J, Kim MJ, Cheng D, Duong DM, Gygi SP, Sheng M (2004) Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J Biol Chem 279:21003–21011

    Article  PubMed  CAS  Google Scholar 

  • Pereda A, O’Brien J, Nagy JI, Smith M, Bukauskas F, Davidson KG, Kamasawa N, Yasumura T, Rash JE (2003) Short-range functional interaction between connexin35 and neighboring chemical synapses. Cell Commun Adhes 10:419–423

    Article  PubMed  CAS  Google Scholar 

  • Pereda AE, Rash JE, Nagy JI, Bennett MV (2004) Dynamics of electrical transmission at club endings on the Mauthner cells. Brain Res Brain Res Rev 47:227–244

    Article  PubMed  CAS  Google Scholar 

  • Petralia RS, Sans N, Wang YX, Wenthold RJ (2005) Ontogeny of postsynaptic density proteins at glutamatergic synapses. Mol Cell Neurosci 29:436–452

    Article  PubMed  CAS  Google Scholar 

  • Petrucci TC, Morrow JS (1991) Actin and tubulin binding domains of synapsins Ia and Ib. Biochemistry 30:413–422

    Article  PubMed  CAS  Google Scholar 

  • Phillips GR, Huang JK, Wang Y, Tanaka H, Shapiro L, Zhang W, Shan WS, Arndt K, Frank M, Gordon RE, et al (2001) The presynaptic particle web: ultrastructure, composition, dissolution, and reconstitution. Neuron 32:63–77

    Article  PubMed  CAS  Google Scholar 

  • Portera-Cailliau C, Pan DT, Yuste R (2003) Activity-regulated dynamic behavior of early dendritic protrusions: evidence for different types of dendritic filopodia. J Neurosci 23:7129–7142

    PubMed  CAS  Google Scholar 

  • Prakash S, Caldwell JC, Eberl DF, Clandinin TR (2005) Drosophila N-cadherin mediates an attractive interaction between photoreceptor axons and their targets. Nat Neurosci 8:443–450

    PubMed  CAS  Google Scholar 

  • Prange O, Murphy TH (2001) Modular transport of postsynaptic density-95 clusters and association with stable spine precursors during early development of cortical neurons. J Neurosci 21:9325–9333

    PubMed  CAS  Google Scholar 

  • Pravettoni E, Bacci A, Coco S, Forbicini P, Matteoli M, Verderio C (2000) Different localizations and functions of L-type and N-type calcium channels during development of hippocampal neurons. Dev Biol 227:581–594

    Article  PubMed  CAS  Google Scholar 

  • Reid CA, Dixon DB, Takahashi M, Bliss TV, Fine A (2004) Optical quantal analysis indicates that long-term potentiation at single hippocampal mossy fiber synapses is expressed through increased release probability, recruitment of new release sites, and activation of silent synapses. J Neurosci 24:3618–3626

    Article  PubMed  CAS  Google Scholar 

  • Renger JJ, Egles C, Liu G (2001) A developmental switch in neurotransmitter flux enhances synaptic efficacy by affecting AMPA receptor activation. Neuron 29:469–484

    Article  PubMed  CAS  Google Scholar 

  • Rosenmund C, Sigler A, Augustin I, Reim K, Brose N, Rhee JS (2002) Differential control of vesicle priming and short-term plasticity by Munc13 isoforms. Neuron 33:411–424

    Article  PubMed  CAS  Google Scholar 

  • Ruthazer ES, Cline HT (2004) Insights into activity-dependent map formation from the retinotectal system: a middle-of-the-brain perspective. J Neurobiol 59:134–146

    Article  PubMed  CAS  Google Scholar 

  • Ruthazer ES, Li J, Cline HT (2006) Stabilization of axon branch dynamics by synaptic maturation. J Neurosci 26:3594–3603

    Article  PubMed  CAS  Google Scholar 

  • Ryan TA, Ziv NE, Smith SJ (1996) Potentiation of evoked vesicle turnover at individually resolved synaptic boutons. Neuron 17:125–134

    Article  PubMed  CAS  Google Scholar 

  • Saito Y, Song WJ, Murakami F (1997) Preferential termination of corticorubral axons on spine-like dendritic protrusions in developing cat. J Neurosci 17:8792–8803

    PubMed  CAS  Google Scholar 

  • Sanes JR, Lichtman JW (2001) Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat Rev Neurosci 2:791–805

    Article  PubMed  CAS  Google Scholar 

  • Sankaranarayanan S, Atluri PP, Ryan TA (2003) Actin has a molecular scaffolding, not propulsive, role in presynaptic function. Nat Neurosci 6:127–135

    Article  PubMed  CAS  Google Scholar 

  • Sara Y, Biederer T, Atasoy D, Chubykin A, Mozhayeva MG, Sudhof TC, Kavalali ET (2005) Selective capability of SynCAM and neuroligin for functional synapse assembly. J Neurosci 25:260–270

    Article  PubMed  CAS  Google Scholar 

  • Scheiffele P, Fan J, Choih J, Fetter R, Serafini T (2000) Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101:657–669

    Article  PubMed  CAS  Google Scholar 

  • Schoch E, Gundelfinger ED (2006) Molecular organization of the presynaptic active zone. Cell Tissue Res (DOI 10.1007/s00441-006-0244-y, this issue)

  • Scholz KP, Miller RJ (1995) Developmental changes in presynaptic calcium channels coupled to glutamate release in cultured rat hippocampal neurons. J Neurosci 15:4612–4617

    PubMed  CAS  Google Scholar 

  • Setou M, Nakagawa T, Seog DH, Hirokawa N (2000) Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288:1796–1802

    Article  PubMed  CAS  Google Scholar 

  • Shapira M, Zhai RG, Dresbach T, Bresler T, Torres VI, Gundelfinger ED, Ziv NE, Garner CC (2003) Unitary assembly of presynaptic active zones from Piccolo-Bassoon transport vesicles. Neuron 38:237–252

    Article  PubMed  CAS  Google Scholar 

  • Sharma K, Fong DK, Craig AM (2006) Postsynaptic protein mobility in dendritic spines: long-term regulation by synaptic NMDA receptor activation. Mol Cell Neurosci 31:702–712

    Article  PubMed  CAS  Google Scholar 

  • Shen K, Bargmann CI (2003) The immunoglobulin superfamily protein SYG-1 determines the location of specific synapses in C. elegans. Cell 112:619–630

    Article  PubMed  CAS  Google Scholar 

  • Shen K, Fetter RD, Bargmann CI (2004) Synaptic specificity is generated by the synaptic guidepost protein SYG-2 and its receptor, SYG-1. Cell 116:869–881

    Article  PubMed  CAS  Google Scholar 

  • Shen W, Wu B, Zhang Z, Dou Y, Rao ZR, Chen YR, Duan S (2006) Activity-induced rapid synaptic maturation mediated by presynaptic cdc42 signaling. Neuron 50:401–414

    Article  PubMed  CAS  Google Scholar 

  • Song JY, Ichtchenko K, Sudhof TC, Brose N (1999) Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc Natl Acad Sci USA 96:1100–1105

    Article  PubMed  CAS  Google Scholar 

  • Star EN, Newton AJ, Murthy VN (2005) Real-time imaging of Rab3a and Rab5a reveals differential roles in presynaptic function. J Physiol (Lond) 569:103–117

    Article  CAS  Google Scholar 

  • Stepanyants A, Tamas G, Chklovskii DB (2004) Class-specific features of neuronal wiring. Neuron 43:251–259

    Article  PubMed  CAS  Google Scholar 

  • Steward O, Schuman EM (2001) Protein synthesis at synaptic sites on dendrites. Annu Rev Neurosci 24:299–325

    Article  PubMed  CAS  Google Scholar 

  • Sullivan SL, Ressler KJ, Buck LB (1995) Spatial patterning and information coding in the olfactory system. Curr Opin Genet Dev 5:516–523

    Article  PubMed  CAS  Google Scholar 

  • Sutton MA, Schuman EM (2005) Local translational control in dendrites and its role in long-term synaptic plasticity. J Neurobiol 64:116–131

    Article  PubMed  CAS  Google Scholar 

  • Tada T, Sheng M (2006) Molecular mechanisms of dendritic spine morphogenesis. Curr Opin Neurobiol 16:95–101

    Article  PubMed  CAS  Google Scholar 

  • Takasu MA, Dalva MB, Zigmond RE, Greenberg ME (2002) Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science 295:491–495

    Article  PubMed  CAS  Google Scholar 

  • Takeichi M, Abe K (2005) Synaptic contact dynamics controlled by cadherin and catenins. Trends Cell Biol 15:216–221

    Article  PubMed  CAS  Google Scholar 

  • Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, Svoboda K (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420:788–794

    Article  PubMed  CAS  Google Scholar 

  • Triller A, Choquet D (2005) Surface trafficking of receptors between synaptic and extrasynaptic membranes: and yet they do move! Trends Neurosci 28:133–139

    Article  PubMed  CAS  Google Scholar 

  • Tsay D, Yuste R (2004) On the electrical function of dendritic spines. Trends Neurosci 27:77–83

    Article  PubMed  CAS  Google Scholar 

  • Umemori H, Linhoff MW, Ornitz DM, Sanes JR (2004) FGF22 and its close relatives are presynaptic organizing molecules in the mammalian brain. Cell 118:257–270

    Article  PubMed  CAS  Google Scholar 

  • Varoqueaux F, Mohrmann R, Neeb A, Sudhof TC, Gottmann K, Brose N (2001) Morphological, biochemical and electrophysiological characterization of neuroligin-mutant mice. Soc Neurosci Abstracts 362.7

  • Varoqueaux F, Jamain S, Brose N (2004) Neuroligin 2 is exclusively localized to inhibitory synapses. Eur J Cell Biol 83:449–456

    Article  PubMed  CAS  Google Scholar 

  • Vaughn JE (1989) Fine structure of synaptogenesis in the vertebrate central nervous system. Synapse 3:255–285

    Article  PubMed  CAS  Google Scholar 

  • Vaughn JE, Sims TJ (1978) Axonal growth cones and developing axonal collaterals form synaptic junctions in embryonic mouse spinal cord. J Neurocytol 7:337–363

    Article  PubMed  CAS  Google Scholar 

  • Vaughn JE, Henrikson CK, Grieshaber JA (1974) A quantitative study of synapses on motor neuron dendritic growth cones in developing mouse spinal cord. J Cell Biol 60:664–672

    Article  PubMed  CAS  Google Scholar 

  • Verhage M, Maia AS, Plomp JJ, Brussaard AB, Heeroma JH, Vermeer H, Toonen RF, Hammer RE, Berg TK van den, Missler M, et al (2000) Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287:864–869

    Article  PubMed  CAS  Google Scholar 

  • Voronin LL, Cherubini E (2004) “Deaf, mute and whispering” silent synapses: their role in synaptic plasticity. J Physiol (Lond) 557:3–12

    Article  CAS  Google Scholar 

  • Waites CL, Craig AM, Garner CC (2005) Mechanisms of vertebrate synaptogenesis. Annu Rev Neurosci 28:251–274

    Article  PubMed  CAS  Google Scholar 

  • Washbourne P, Bennett JE, McAllister AK (2002) Rapid recruitment of NMDA receptor transport packets to nascent synapses. Nat Neurosci 5:751–759

    PubMed  CAS  Google Scholar 

  • Witzemann V (2006) Development of the neuromuscular junction. Cell Tissue Res (DOI 10.1007/s00441-006-0237-x, this issue)

  • Wong WT, Wong RO (2000) Rapid dendritic movements during synapse formation and rearrangement. Curr Opin Neurobiol 10:118–124

    Article  PubMed  CAS  Google Scholar 

  • Yamagata M, Sanes JR, Weiner JA (2003) Synaptic adhesion molecules. Curr Opin Cell Biol 15:621–632

    Article  PubMed  CAS  Google Scholar 

  • Yao I, Iida J, Nishimura W, Hata Y (2003) Synaptic localization of SAPAP1, a synaptic membrane-associated protein. Genes Cells 8:121–129

    Article  PubMed  CAS  Google Scholar 

  • Yuste R, Bonhoeffer T (2001) Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu Rev Neurosci 24:1071–1089

    Article  PubMed  CAS  Google Scholar 

  • Yuste R, Bonhoeffer T (2004) Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat Rev Neurosci 5:24–34

    Article  PubMed  CAS  Google Scholar 

  • Zhai RG, Bellen HJ (2004) The architecture of the active zone in the presynaptic nerve terminal. Physiology (Bethesda) 19:262–270

    Google Scholar 

  • Zhai RG, Vardinon-Friedman H, Cases-Langhoff C, Becker B, Gundelfinger ED, Ziv NE, Garner CC (2001) Assembling the presynaptic active zone: a characterization of an active one precursor vesicle. Neuron 29:131–143

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Benson DL (2001) Stages of synapse development defined by dependence on F-actin. J Neurosci 21:5169–5181

    PubMed  CAS  Google Scholar 

  • Ziv NE, Garner CC (2001) Principles of glutamatergic synapse formation: seeing the forest for the trees. Curr Opin Neurobiol 11:536–543

    Article  PubMed  CAS  Google Scholar 

  • Ziv NE, Garner CC (2004) Cellular and molecular mechanisms of presynaptic assembly. Nat Rev Neurosci 5:385–399

    Article  PubMed  CAS  Google Scholar 

  • Ziv NE, Smith SJ (1996) Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17:91–102

    Article  PubMed  CAS  Google Scholar 

  • Zundert B van, Yoshii A, Constantine-Paton M (2004) Receptor compartmentalization and trafficking at glutamate synapses: a developmental proposal. Trends Neurosci 27:428–437

    Article  PubMed  Google Scholar 

  • Zuo Y, Lin A, Chang P, Gan WB (2005) Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46:181–189

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig C. Garner.

Additional information

The authors acknowledge the support of the NIH (grant no. HD38760 DA016758) to C.C.G., the Ruth L. Kirchstein National Research Service Award (NRSA) to C.L.W., and the United States Israel Binational Science Foundation (grant no. 2003176) to C.C.G. and N.E.Z.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garner, C.C., Waites, C.L. & Ziv, N.E. Synapse development: still looking for the forest, still lost in the trees. Cell Tissue Res 326, 249–262 (2006). https://doi.org/10.1007/s00441-006-0278-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0278-1

Keywords

Navigation