Skip to main content

Advertisement

Log in

NK1, NK2, NK3 and CGRP1 receptors identified in rat oral soft tissues, and in bone and dental hard tissue cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The distribution of the tachykinin receptors neurokinin-1 (NK1), neurokinin-2 (NK2) and neurokinin-3 (NK3), and the calcitonin gene-related peptide-1 (CGRP1) receptor were examined in rat teeth and tooth-supporting tissues by immunohistochemical methods and light and confocal microscopy. Western blot analysis was performed to identify the NK1- and the CGRP1-receptor proteins in the dental pulp. The results showed that odontoblasts and ameloblasts, cementoblasts and cementocytes, osteoblasts and osteocytes are all supported with the tachykinin receptors NK1 and NK2, but a distinct, graded cellular labeling pattern was demonstrated. The ameloblasts were also positive for CGRP1 receptor. Blood vessels in oral tissues expressed the tachykinin receptors NK1, NK2 and NK3, and the CGRP1 receptor. Both gingival and Malassez epithelium were abundantly supplied by NK2 receptor. Pulpal and periodontal fibroblasts demonstrated NK1 and NK2 receptors. Western blot analysis identified both the NK1- and the CGRP1-receptor proteins in the dental pulp. These results clearly indicate that the neuropeptides substance P, neurokinin A, neurokinin B and CGRP, released from sensory axons upon stimulation, directly modulate the function of the different types of bone and dental hard tissue cells, and regulate functions of blood vessels, fibroblasts and epithelial cells in oral tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–i.
Fig. 2.
Fig. 3a–h.
Fig. 4.

Similar content being viewed by others

References

  • Berggreen E, Heyeraas KJ (2000) Effect of the sensory neuropeptide antagonists h-CGRP((8–37)) and SR 140.33 on pulpal and gingival blood flow in ferrets. Arch Oral Biol 45:537–542

    Article  CAS  PubMed  Google Scholar 

  • Berggreen E, Sae-Lim V, Bletsa A, Heyeraas KJ (2001) Effect of denervation on healing after tooth replantation in the ferret. Acta Odontol Scand 385:379–385

    Article  Google Scholar 

  • Bernard GW, Shih C (1990) The osteogenic stimulating effect of neuroactive calcitonin gene-related peptide. Peptides 11:625–632

    CAS  PubMed  Google Scholar 

  • Bjurholm A, Kreicbergs A, Schultzberg M, Lerner UH (1992) Neuroendocrine regulation of cyclic AMP formation in osteoblastic cell lines (UMR-106-01, ROS 17/2.8, MC3T3-E1, and Saos-2) and primary bone cells. J Bone Miner Res 7:1011–1019

    CAS  PubMed  Google Scholar 

  • Bongenhielm U, Haegerstrand A, Theodorsson E, Fried K (1995) Effects of neuropeptides on growth of cultivated rat molar pulp fibroblasts. Regul Pept 60:91–98

    CAS  PubMed  Google Scholar 

  • Byers MR, Mecifi KB, Kimberly CL (1987) Numerous nerves with calcitonin gene-related peptide-like immunoreactivity innervate junctional epithelium of rats. Brain Res 419:311–314

    CAS  PubMed  Google Scholar 

  • Byers MR, Närhi MV, Mecifi KB (1988) Acute and chronic reactions of dental sensory nerve fibers to cavities and desiccation in rat molars. Anat Rec 221:872–883

    CAS  PubMed  Google Scholar 

  • Casasco A, Calligaro A, Casasco M, Springall DR, Polak JM, Poggi P, Marchetti C (1990) Peptidergic nerves in human dental pulp. Histochemistry 95:115–121

    CAS  PubMed  Google Scholar 

  • Dennis T, Fournier A, Cadieux A, Pomerleau F, Jolicoeur FB, St Pierre S, Quirion R (1990) hCGRP8–37, a calcitonin gene-related peptide antagonist revealing calcitonin gene-related peptide receptor heterogeneity in brain and periphery. J Pharmacol Exp Ther 254:123–128

    CAS  PubMed  Google Scholar 

  • D'Souza SM, MacIntyre I, Girgis SI, Mundy GR (1986) Human synthetic calcitonin gene-related peptide inhibits bone resorption in vitro. Endocrinology 119:58–61

    CAS  PubMed  Google Scholar 

  • Edvinsson L, Cantera L, Jansen-Olesen I, Uddman R (1997) Expression of calcitonin gene-related peptide1 receptor mRNA in human trigeminal ganglia and cerebral arteries. Neurosci Lett 229:209–211

    Article  CAS  PubMed  Google Scholar 

  • Frank RM (1968) Attachment sites between the odontoblast process and the intradental nerve fiber. Arch Oral Biol 13:833–834

    CAS  PubMed  Google Scholar 

  • Fristad I, Heyeraas KJ, Kvinnsland I (1994) Nerve fibres and cells immunoreactive to neurochemical markers in developing rat molars and supporting tissues. Arch Oral Biol 39:633–646

    CAS  PubMed  Google Scholar 

  • Fristad I, Heyeraas KJ, Hals Kvinnsland I, Jonsson R (1995a) Recruitment of immunocompetent cells after dentinal injuries in innervated and denervated young rat molars: an immunohistochemical study. J Histochem Cytochem 43:871–879

    CAS  PubMed  Google Scholar 

  • Fristad I, Heyeraas KJ, Jonsson R, Hals Kvinnsland I (1995b) Effect of inferior alveolar nerve axotomy on immune cells and nerve fibres in young rat molars. Arch Oral Biol 40:1053–1062

    Article  CAS  PubMed  Google Scholar 

  • Fristad I, Hals Kvinnsland I, Jonsson R, Heyeraas KJ (1997) Effect of intermittent long-lasting electrical tooth stimulation on pulpal blood flow and immunocompetent cells. A haemodynamic and immunohistochemical study in young rat molars. Exp Neurol 146:230–239

    Article  CAS  PubMed  Google Scholar 

  • Gazelius B, Edwall B, Olgart L, Lundberg JM, Hökfelt T, Fischer JA (1987) Vasodilatory effects and coexistence of calcitonin gene-related peptide (CGRP) and substance P in sensory nerves of cat dental pulp. Acta Physiol Scand 130:33–40

    CAS  PubMed  Google Scholar 

  • Goto T, Kido MA, Yamaza T, Tanaka T (2001) Substance P and substance P receptors in bone and gingival tissues. Med Electron Microsc 34:77–85

    Article  CAS  PubMed  Google Scholar 

  • Haegerstrand A, Dalsgaard C-J, Jonzon B, Larsson O, Nilsson J (1990) Calcitonin gene-related peptide stimulates proliferation of human endothelial cells. Proc Natl Acad Sci U S A 87:3299–3303

    CAS  PubMed  Google Scholar 

  • Hals Kvinnsland I, Tadokoro O, Heyeraas KJ, Kozawa Y, Vandevska-Radunovic V (2000) Neuroendocrine cells in Malassez epithelium and gingiva of the cat. Acta Odontol Scand 58:107–112

    Article  PubMed  Google Scholar 

  • Heyeraas KJ, Berggreen E (1999) Interstitial fluid pressure in normal and inflamed pulp. Crit Rev Oral Biol Med 10:328–336

    CAS  PubMed  Google Scholar 

  • Hökfelt T, Broberger C, Xu ZQ, Sergeyev V, Ubink R, Diez M (2000) Neuropeptides—an overview. Neuropharmacology 39:1337–1356

    PubMed  Google Scholar 

  • Hubbard MJ (2000) Calcium transport across the dental enamel epithelium. Crit Rev Oral Biol Med 11:437–466

    CAS  PubMed  Google Scholar 

  • Jacobsen EB, Heyeraas KJ (1996) Effect of capsaicin treatment or inferior alveolar nerve resection on dentine formation and calcitonin gene-related peptide- and substance P-immunoreactive nerve fibres in rat molar pulp. Arch Oral Biol 41:1121–1131

    Article  CAS  PubMed  Google Scholar 

  • Kido MA, Yamaza T, Goto T, Tanaka T (1999) Immunocytochemical localization of substance P neurokinin-1 receptors in rat gingival tissue. Cell Tissue Res 297:213–222

    CAS  PubMed  Google Scholar 

  • Lecci A, Giuliani S, Tramontana M, Carini F, Maggi CA (2000) Peripheral actions of tachykinins. Neuropeptides 34:303–313

    Article  CAS  PubMed  Google Scholar 

  • Lerner UH (2000) The role of skeletal nerve fibres in bone metabolism. Endocrinologist 10:377–382

    Google Scholar 

  • Lundberg P, Lundgren I, Mukohyama H, Lehenkari PP, Horton MA, Lerner UH (2001) Vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating peptide receptor subtypes in mouse calvarial osteoblasts: presence of VIP-2 receptors and differentiation-induced expression of VIP-1 receptors. Endocrinology 142:339–347

    CAS  PubMed  Google Scholar 

  • Luthman J, Luthman D, Hökfelt T (1992) Occurrence and distribution of different neurochemical markers in the human dental pulp. Arch Oral Biol 37:193–208

    CAS  PubMed  Google Scholar 

  • Mitsuhashi M, Payan DG (1987) The mitogenic effects of vasoactive neuropeptides on cultured smooth muscle cell lines. Life Sci 40:853–861

    Article  CAS  PubMed  Google Scholar 

  • Morara S, Wimalawansa SJ, Rosina A (1998) Monoclonal antibodies reveal expression of the CGRP receptor in Purkinje cells, interneurons and astrocytes of rat cerebellar cortex. Neuroreport 9:3755–3759

    CAS  PubMed  Google Scholar 

  • Nilsson J, von Euler AM, Dalsgaard C-J (1985) Stimulation of connective tissue cell growth by substance P and substance K. Nature 315:61–63

    CAS  PubMed  Google Scholar 

  • Olgart L, Hökfelt T, Nilsson G, Pernow B (1977) Localization of substance P-like immunoreactivity in nerves in the tooth pulp. Pain 4:153–159

    CAS  PubMed  Google Scholar 

  • Olgart L, Matsuo M, Lindskog S, Edwall L (1995) Enhanced formation of secondary dentin in the absence of nerve supply to feline teeth. Eur J Oral Sci 103:160–165

    CAS  PubMed  Google Scholar 

  • Sherman BE, Chole RA (1995) A mechanism for sympathectomy-induced bone resorption in the middle ear. Otolaryngol Head Neck Surg 113:569–581

    CAS  PubMed  Google Scholar 

  • Tadokoro O, Maeda T, Heyeraas KJ, Vandevska-Radunovic V, Kozawa Y, Hals Kvinnsland I (2002) Merkel-like cells in Malassez epithelium in the periodontal ligament of cats: an immunohistochemical, confocal-laser scanning and immuno electronmicroscopic investigation. J Periodont Res 37:456–463

    CAS  Google Scholar 

  • Togari A, Arai M, Mizutani S, Mizutani S, Koshihara Y, Nagatsu T (1997) Expression of mRNAs for neuropeptide receptors and beta-adrenergic receptors in human osteoblasts and human osteogenic sarcoma cells. Neurosci Lett 233:125–128

    Article  CAS  PubMed  Google Scholar 

  • Tortorella C, Macchi C, Forneris M, Nussdorfer GG (2001) Calcitonin gene-related peptide (CGRP), acting via CGRP type 1 receptors, inhibits potassium-stimulated aldosterone secretion and enhances basal catecholamine secretion from rat adrenal gland. Int J Mol Med 8:261–264

    CAS  PubMed  Google Scholar 

  • Uddman R, Kato J, Lindgren P, Sundler F, Edvinsson L (1999) Expression of calcitonin gene-related peptide-1 receptor mRNA in human tooth pulp and trigeminal ganglion. Arch Oral Biol 44:1–6

    Article  CAS  PubMed  Google Scholar 

  • Vandevska-Radunovic V, Kvinnsland S, Jonsson R (1999) Delayed recruitment of immunocompetent cells in denervated rat periodontal ligament following experimental tooth movement. J Dent Res 78:1214–1220

    CAS  PubMed  Google Scholar 

  • van Rossum D, Hanisch UK, Quirion R (1997) Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors. Neurosci Biobehav Rev 21:649–678

    PubMed  Google Scholar 

  • Wakisaka S, Nishikawa S, Ichikawa H, Matsuo S, Takano Y, Akai M (1985) The distribution and origin of substance P-like immunoreactivity in the rat molar pulp and periodontal tissues. Arch Oral Biol 30:813–818

    CAS  PubMed  Google Scholar 

  • Wakisaka S, Ichikawa H, Nishikawa S, Matsuo S, Takano Y, Akai M (1988) Neurokinin A-like immunoreactivity in feline dental pulp: its distribution, origin and coexistence with substance P-like immunoreactivity. Cell Tissue Res 251:565–569

    CAS  PubMed  Google Scholar 

  • Wimalawansa SJ (1996) Calcitonin gene-related peptide and its receptors: molecular genetics, physiology, pathophysiology, and therapeutic potentials. Endocr Rev 17:533–585

    CAS  PubMed  Google Scholar 

  • Wimalawansa SJ (1997) Amylin, calcitonin gene-related peptide, calcitonin, and adrenomedullin: a peptide superfamily. Crit Rev Neurobiol 11:167–239

    CAS  PubMed  Google Scholar 

  • Wimalawansa SJ, Gunasekera RD, Zhang F (1993) Isolation, purification, and characterization of calcitonin gene-related peptide receptor. Peptides 14:691–699

    CAS  PubMed  Google Scholar 

  • Ziche M, Morbidelli L, Pacini M, Dolara P, Maggi CA (1990) NK1-receptors mediate the proliferative response of human fibroblasts to tachykinins. Br J Pharmacol 100:11–14

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We express our gratitude to S. Østvold and A. Nyhaug for technical expertise and assistance. The NK1-, NK2- and NK3-receptor antibodies were kindly provided by Dr. Nigel Bunnett, University of California, San Francisco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Fristad.

Additional information

Grants from the Norwegian Research Council (grant no. 129582) and the Dental Faculty, University of Bergen, Bergen, Norway, supported this study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fristad, I., Vandevska-Radunovic, V., Fjeld, K. et al. NK1, NK2, NK3 and CGRP1 receptors identified in rat oral soft tissues, and in bone and dental hard tissue cells. Cell Tissue Res 311, 383–391 (2003). https://doi.org/10.1007/s00441-002-0691-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-002-0691-z

Keywords

Navigation