Skip to main content
Log in

Poisson–Furstenberg boundary and growth of groups

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We study the Poisson–Furstenberg boundary of random walks on permutational wreath products. We give a sufficient condition for a group to admit a symmetric measure of finite first moment with non-trivial boundary, and show that this criterion is useful to establish exponential word growth of groups. We construct groups of exponential growth such that all finitely supported (not necessarily symmetric, possibly degenerate) random walks on these groups have trivial boundary. This gives a negative answer to a question of Kaimanovich and Vershik.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Amir, G., Virág, B.: Speed exponents of random walks on groups (2013). arXiv:1203.6226v2 [math]

  2. Baldi, P., Lohoué, N., Peyrière, J.: Sur la classification des groupes récurrents. C. R. Acad. Sci. Paris Sér. A–B 285(16), A1103–A1104 (1977) (French, with English summary)

  3. Bartholdi, L.: The growth of Grigorchuk’s torsion group. Internat. Math. Res. Not. 20, 1049–1054 (1998). doi:10.1155/S1073792898000622. arXiv:math/0012108

  4. Bartholdi, L., Grigorchuk, R. I.: On the spectrum of Hecke type operators related to some fractal groups, Tr. Mat. Inst. Steklova, 231, 5–45 (2000) no. Din. Sist., Avtom. i Beskon. Gruppy. arXiv:math/9910102. (English transl. Proc. Steklov Inst. Math. 4(231), 1–41 (2000))

  5. Bartholdi, L., Virág, Bálint: Amenability via random walks. Duke Math. J. 130(1), 39–56 (2005). doi:10.1215/S0012-7094-05-13012-5. arXiv:math/0305262

  6. Bartholdi, L., Kaimanovich, V.A., Nekrashevych, V.V.: On amenability of automata groups. Duke Math. J. 154(3), 575–598 (2010). doi:10.1215/00127094-2010-046. arXiv:0802.2837 [math]

  7. Bartholdi, L., Erschler, A.: Growth of permutational extensions. Invent. Math. 189(2), 431–455 (2012). doi:10.1007/s00222-011-0368-x. arXiv:1011.5266 [math]

  8. Benjamini, Itai, Schramm, Oded: Every graph with a positive Cheeger constant contains a tree with a positive Cheeger constant. Geom. Funct. Anal. 7(3), 403–419 (1997). doi:10.1007/PL00001625

    Article  MathSciNet  MATH  Google Scholar 

  9. Brieussel, J.: Behaviors of entropy on finitely generated groups. Ann. Probab. 41(6), 4116–4161 (2013). doi:10.1214/12-AOP761. arXiv:1110.5099 [math]

  10. Chou, Ching: Elementary amenable groups. Ill. J. Math. 24(3), 396–407 (1980)

    MathSciNet  MATH  Google Scholar 

  11. Derriennic, Y.: Quelques applications du théorème ergodique sous-additif. In: Conference on Random Walks (Kleebach, (1979), Astérisque, vol. 74, pp. 183–201. Soc. Math. France, Paris, (1980) (French, with English summary)

  12. Dynkin, E.B., Maljutov, M.B.: Random walk on groups with a finite number of generators. Dokl. Akad. Nauk SSSR, 137, 1042–1045 (1961) (Russian)

  13. Dyubina, A.G.: Characteristics of random walks on the wreath products of groups. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 256 (1999) Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 3, 31–37, 264. doi:10.1023/A:1012465406149. (Russian, with English and Russian summaries) (English transl. J. Math. Sci. (New York), 107(5), 4166–4171 (2001))

  14. Erschler, Anna G: On drift and entropy growth for random walks on groups. Ann. Probab. 31(3), 1193–1204 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Erschler, Anna G: Liouville property for groups and manifolds. Invent. Math. 155(1), 55–80 (2004). doi:10.1007/s00222-003-0314-7

    Article  MathSciNet  MATH  Google Scholar 

  16. Erschler, Anna G.: Critical constants for recurrence of random walks on \(G\)-spaces. Ann. Inst. Fourier (Grenoble) 55(2), 493–509 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Erschler, Anna G.: Poisson–Furstenberg Boundaries, Large-Scale Geometry and Growth of Groups. Proc. ICM. Hyderabad, India (2010)

    Google Scholar 

  18. Erschler, Anna G., Karlsson, Anders: Homomorphisms to \(\mathbb{R}\) constructed from random walks. Ann. Inst. Fourier. 60(6), 2095–2113 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gilch, Lorenz A.: Acceleration of lamplighter random walks. Markov Process. Rel. Fields 14(4), 465–486 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Grigorchuk, Rostislav I.: On the Milnor problem of group growth. Dokl. Akad. Nauk SSSR 271(1), 30–33 (1983)

    MathSciNet  Google Scholar 

  21. Grigorchuk, R.I.: Degrees of growth of finitely generated groups and the theory of invariant means. CCCP Cep. Mat. 48(5), 939–985 (1984) (English translation: Math. USSR-Izv. 25(2), 259–300 (1985)

  22. Grigorchuk, Rostislav I.: Degrees of growth of \(p\)-groups and torsion-free groups. Mat. Sb. (N.S.) 126(168)(2), 194–214 (1985). 286

    MathSciNet  MATH  Google Scholar 

  23. Grigorchuk, Rostislav I.: Superamenability and the occurrence problem of free semigroups. Funktsional. Anal. i Prilozhen. 21(1), 74–75 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ibragimov, I.A., Linnik, Y.V.: Independent and stationary sequences of random variables. Wolters-Noordhoff Publishing, Groningen (1971) (With a supplementary chapter by I. A. Ibragimov and V. V. Petrov; Translation from the Russian edited by J. F. C. Kingman)

  25. Kaimanovich, Vadim A.: “Münchhausen trick” and amenability of self-similar groups. Internat. J. Algebra Comput. 15(5–6), 907–937 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kaimanovich, Vadim A., Vershik, Anatoly M.: Random walks on discrete groups: boundary and entropy. Ann. Probab. 11(3), 457–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kalpazidou, S.L.: Cycle representations of Markov processes. In: Applications of Mathematics (New York), vol. 28, 2nd edn. Springer, New York (2007) (Stochastic Modelling and Applied Probability)

  28. Kalpazidou, Sophia L.: On multiple circuit chains with a countable infinity of states. Stoch. Process. Appl. 31(1), 51–70 (1989). doi:10.1016/0304-4149(89)90102-6

    Article  MathSciNet  MATH  Google Scholar 

  29. Karlsson, A., Ledrappier, F.: Linear drift and Poisson boundary for random walks. Pure Appl. Math. Q. 3(4), 1027–1036 (2007) (Special Issue: In honor of Grigory Margulis)

  30. Mathieu, P.: Carne–Varopoulos bounds for centered random walks. Ann. Probab. 34(3), 987–1011 (2006). doi:10.1214/009117906000000052

    Article  MathSciNet  MATH  Google Scholar 

  31. Rokhlin, V.A.: Lectures on the entropy theory of transformations with invariant measure. Uspehi Mat. Nauk 22(5)(137), 3–56 (1967) (Russian)

  32. Rosenblatt, Joseph Max: Ergodic and mixing random walks on locally compact groups. Math. Ann. 257(1), 31–42 (1981). doi:10.1007/BF01450653

    Article  MathSciNet  MATH  Google Scholar 

  33. Woess, Wolfgang: Random walks on infinite graphs and groups. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Bartholdi.

Additional information

The work is supported by the ERC starting Grant GA 257110 “RaWG”, the Courant Research Centre “Higher Order Structures” of the University of Göttingen, and the ANR Grant ANR-14-ACHN-0018-01.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartholdi, L., Erschler, A. Poisson–Furstenberg boundary and growth of groups. Probab. Theory Relat. Fields 168, 347–372 (2017). https://doi.org/10.1007/s00440-016-0712-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-016-0712-6

Mathematics Subject Classification

Navigation