Skip to main content
Log in

Mutation of the mitochondrial carrier SLC25A42 causes a novel form of mitochondrial myopathy in humans

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Myopathies are heterogeneous disorders characterized clinically by weakness and hypotonia, usually in the absence of gross dystrophic changes. Mitochondrial dysfunction is a frequent cause of myopathy. We report a simplex case born to consanguineous parents who presented with muscle weakness, lactic acidosis, and muscle changes suggestive of mitochondrial dysfunction. Combined autozygome and exome analysis revealed a missense variant in the SLC25A42 gene, which encodes an inner mitochondrial membrane protein that imports coenzyme A into the mitochondrial matrix. Zebrafish slc25a42 knockdown morphants display severe muscle disorganization and weakness. Importantly, these features are rescued by normal human SLC25A42 RNA, but not by RNA harboring the patient’s variant. Our data support a potentially causal link between SLC25A42 mutation and mitochondrial myopathy in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alkuraya FS (2012) Discovery of rare homozygous mutations from studies of consanguineous pedigrees. Curr Protoc Hum Genet 6.12. 1–6.12. 13

  • Alkuraya FS (2013) The application of next-generation sequencing in the autozygosity mapping of human recessive diseases. Hum Genet 132:1197–1211

    Article  PubMed  CAS  Google Scholar 

  • Alkuraya FS (2014) Genetics and genomic medicine in Saudi Arabia. Mol Genet Genom Med 2:369–378

    Article  Google Scholar 

  • Berardi MJ, Shih WM, Harrison SC, Chou JJ (2011) Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature 476:109–113. doi:10.1038/nature10257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bernier F, Boneh A, Dennett X, Chow C, Cleary M, Thorburn D (2002) Diagnostic criteria for respiratory chain disorders in adults and children. Neurology 59:1406–1411

    Article  PubMed  CAS  Google Scholar 

  • Calvo SE, Compton AG, Hershman SG, Lim SC, Lieber DS, Tucker EJ, Laskowski A, Garone C, Liu S, Jaffe DB (2012) Molecular diagnosis of infantile mitochondrial disease with targeted next-generation sequencing. Sci Transl Med 4:118ra10–118ra10

  • Camacho JA, Obie C, Biery B, Goodman BK, Hu C-A, Almashanu S, Steel G, Casey R, Lambert M, Mitchell GA (1999) Hyperornithinaemia-hyperammonaemia-homocitrullinuria syndrome is caused by mutations in a gene encoding a mitochondrial ornithine transporter. Nat Genet 22:151–158

    Article  PubMed  CAS  Google Scholar 

  • Chen H (2015) Mitochondrial myopathies. In: Chen H (ed) Atlas of genetic diagnosis and counseling. Springer, New York, pp 1–11

    Google Scholar 

  • Debray F-G, Mitchell GA, Allard P, Robinson BH, Hanley JA, Lambert M (2007) Diagnostic accuracy of blood lactate-to-pyruvate molar ratio in the differential diagnosis of congenital lactic acidosis. Clin Chem 53:916–921

    Article  PubMed  CAS  Google Scholar 

  • Dehez F, Pebay-Peyroula E, Chipot C (2008) Binding of ADP in the mitochondrial ADP/ATP carrier is driven by an electrostatic funnel. J Am Chem Soc 130:12725–12733. doi:10.1021/ja8033087

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Vizarra E, Tiranti V, Zeviani M (2009) Assembly of the oxidative phosphorylation system in humans: what we have learned by studying its defects. Biochim Biophys Acta Mol (BBA) Cell Res 1793:200–211

    Article  CAS  Google Scholar 

  • Fiermonte G, Paradies E, Todisco S, Marobbio CM, Palmieri F (2009) A novel member of solute carrier family 25 (SLC25A42) is a transporter of coenzyme A and adenosine 3′,5′-diphosphate in human mitochondria. J Biol Chem 284:18152–18159. doi:10.1074/jbc.M109.014118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gai X, Ghezzi D, Johnson MA, Biagosch CA, Shamseldin HE, Haack TB, Reyes A, Tsukikawa M, Sheldon CA, Srinivasan S (2013) Mutations in FBXL4, encoding a mitochondrial protein, cause early-onset mitochondrial encephalomyopathy. Am J Hum Genet 93:482–495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guernsey DL, Jiang H, Campagna DR, Evans SC, Ferguson M, Kellogg MD, Lachance M, Matsuoka M, Nightingale M, Rideout A (2009) Mutations in mitochondrial carrier family gene SLC25A38 cause nonsyndromic autosomal recessive congenital sideroblastic anemia. Nat Genet 41:651–653

    Article  PubMed  CAS  Google Scholar 

  • Gupta VA, Ravenscroft G, Shaheen R, Todd EJ, Swanson LC, Shiina M, Ogata K, Hsu C, Clarke NF, Darras BT (2013) Identification of KLHL41 mutations implicates BTB-Kelch-mediated ubiquitination as an alternate pathway to myofibrillar disruption in nemaline myopathy. Am J Hum Genet 93:1108–1117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haas RH, Parikh S, Falk MJ, Saneto RP, Wolf NI, Darin N, Cohen BH (2007) Mitochondrial disease: a practical approach for primary care physicians. Pediatrics 120:1326–1333

    Article  PubMed  Google Scholar 

  • Haas RH, Parikh S, Falk MJ, Saneto RP, Wolf NI, Darin N, Wong L-J, Cohen BH, Naviaux RK; Committee TMMSs (2008) The in-depth evaluation of suspected mitochondrial disease. Mol Genet Metab 94:16–37

  • Huizing M, Iacobazzi V, Ijlst L, Savelkoul P, Ruitenbeek W, van den Heuvel L, Indiveri C, Smeitink J, Trijbels F, Wanders R (1997) Cloning of the human carnitine-acylcarnitine carrier cDNA and identification of the molecular defect in a patient. Am J Hum Genet 61:1239–1245

  • Kaukonen J, Juselius JK, Tiranti V, Kyttälä A, Zeviani M, Comi GP, Keränen S, Peltonen L, Suomalainen A (2000) Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science 289:782–785

    Article  PubMed  CAS  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858. doi:10.1038/nprot.2015.053

    Article  PubMed  CAS  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Sinasac DS, Iijima M, Boright AP, Begum L, Lee JR, Yasuda T, Ikeda S, Hirano R, Terazono H (1999) The gene mutated in adult-onset type II citrullinaemia encodes a putative mitochondrial carrier protein. Nat Genet 22:159–163

    Article  PubMed  CAS  Google Scholar 

  • Lang BF, Gray MW, Burger G (1999) Mitochondrial genome evolution and the origin of eukaryotes. Annu Rev Genet 33:351–397

    Article  PubMed  CAS  Google Scholar 

  • Milone M, Wong L-J (2013) Diagnosis of mitochondrial myopathies. Mol Genet Metab 110:35–41

    Article  PubMed  CAS  Google Scholar 

  • Molinari F, Raas-Rothschild A, Rio M, Fiermonte G, Encha-Razavi F, Palmieri L, Palmieri F, Ben-Neriah Z, Kadhom N, Vekemans M (2005) Impaired mitochondrial glutamate transport in autosomal recessive neonatal myoclonic epilepsy. Am J Hum Genet 76:334–339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nelson DR, Felix CM, Swanson JM (1998) Highly conserved charge-pair networks in the mitochondrial carrier family. J Mol Biol 277:285–308. doi:10.1006/jmbi.1997.1594

    Article  PubMed  CAS  Google Scholar 

  • Palmieri F (2004) The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflugers Arch 447:689–709. doi:10.1007/s00424-003-1099-7

    Article  PubMed  CAS  Google Scholar 

  • Palmieri F (2013) The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Aspects Med 34:465–484

    Article  PubMed  CAS  Google Scholar 

  • Palmieri F, Pierri CL (2010) Structure and function of mitochondrial carriers—role of the transmembrane helix P and G residues in the gating and transport mechanism. FEBS Lett 584:1931–1939. doi:10.1016/j.febslet.2009.10.063

    Article  PubMed  CAS  Google Scholar 

  • Pebay-Peyroula E, Dahout-Gonzalez C, Kahn R, Trezeguet V, Lauquin GJ, Brandolin G (2003) Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 426:39–44. doi:10.1038/nature02056

    Article  PubMed  CAS  Google Scholar 

  • Robinson AJ, Kunji ER (2006) Mitochondrial carriers in the cytoplasmic state have a common substrate binding site. Proc Natl Acad Sci USA 103:2617–2622. doi:10.1073/pnas.0509994103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robinson AJ, Overy C, Kunji ER (2008) The mechanism of transport by mitochondrial carriers based on analysis of symmetry. Proc Natl Acad Sci USA 105:17766–17771. doi:10.1073/pnas.0809580105

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenberg MJ, Agarwala R, Bouffard G, Davis J, Fiermonte G, Hilliard MS, Koch T, Kalikin LM, Makalowska I, Morton DH (2002) Mutant deoxynucleotide carrier is associated with congenital microcephaly. Nat Genet 32:175–179

    Article  PubMed  CAS  Google Scholar 

  • Ruprecht JJ, Hellawell AM, Harding M, Crichton PG, McCoy AJ, Kunji ER (2014) Structures of yeast mitochondrial ADP/ATP carriers support a domain-based alternating-access transport mechanism. Proc Natl Acad Sci USA 111:E426–E434. doi:10.1073/pnas.1320692111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saraste M, Walker JE (1982) Internal sequence repeats and the path of polypeptide in mitochondrial ADP/ATP translocase. FEBS Lett 144:250–254

    Article  PubMed  CAS  Google Scholar 

  • Shamseldin HE, Alshammari M, Al-Sheddi T, Salih MA, Alkhalidi H, Kentab A, Repetto GM, Hashem M, Alkuraya FS (2012) Genomic analysis of mitochondrial diseases in a consanguineous population reveals novel candidate disease genes. J Med Genet 49:234–241

    Article  PubMed  Google Scholar 

  • Smeitink J, van den Heuvel L, DiMauro S (2001) The genetics and pathology of oxidative phosphorylation. Nat Rev Genet 2:342–352

    Article  PubMed  CAS  Google Scholar 

  • Smith LL, Beggs AH, Gupta VA (2013) Analysis of skeletal muscle defects in larval zebrafish by birefringence and touch-evoke escape response assays. J Vis Exp JoVE e50925–e50925

  • Vasta V, Ng SB, Turner EH, Shendure J, Hahn SH (2009) Next generation sequence analysis for mitochondrial disorders. Genome Med 1:100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Tajkhorshid E (2008) Electrostatic funneling of substrate in mitochondrial inner membrane carriers. Proc Natl Acad Sci USA 105:9598–9603. doi:10.1073/pnas.0801786105

    Article  PubMed  PubMed Central  Google Scholar 

  • Westerfield M (2007) The Zebrafish Book: a guide for the laboratory use of Zebrafish (Danio Rerio)

  • Wolf NI, Smeitink JA (2002) Mitochondrial disorders A proposal for consensus diagnostic criteria in infants and children. Neurology 59:1402–1405

    Article  PubMed  Google Scholar 

  • Zallot R, Agrimi G, Lerma-Ortiz C, Teresinski HJ, Frelin O, Ellens KW, Castegna A, Russo A, de Crécy-Lagard V, Mullen RT (2013) Identification of mitochondrial coenzyme A transporters from maize and Arabidopsis. Plant Physiol 162:581–588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Genotyping and Sequencing Core Facilities at KFSHRC for their technical help. DNA sequencing for molecular cloning was done through the Boston Children’s Hospital IDDRC Molecular Genetics Core, which is supported by National Institutes of Health grant [NIH-P30-HD-18655].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vandana A. Gupta or Fowzan S. Alkuraya.

Ethics declarations

Funding

This work was supported by King Abdulaziz City for Science and Technology [13-BIO1113-20 to FSA], the National Institutes of Health, including the National Institute of Arthritis and Musculoskeletal and Skin Diseases [K01 AR062601 to VAG] and the National Institute of Neurological Disorders and Stroke [F31 NS081928 to LLS], as well as the Charles H. Hood Foundation Child Health Research Grant to VAG.

Conflict of interest

Authors declare no conflict of interest.

Additional information

H. E. Shamseldin and L. L. Smith have contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1. Multispecies alignment shows strong conservation of the N291 residue. (PDF 52 kb)

439_2015_1608_MOESM2_ESM.pdf

Figure S2. Slc25a42 morphants exhibit organized skeletal muscles. (A-C) Whole-mount phalloidin staining of filamentous actin in 3 dpf zebrafish shows normal skeletal muscle organization in both wild-type embryos and slc25a42 morphants. Scale bars: 10 μm. (D-G) Wild-type and morphant embryos display relatively bright birefringence under polarized light microscopy. Note that the curvature of morphants often impairs clear visualization of this feature. (PDF 4608 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamseldin, H.E., Smith, L.L., Kentab, A. et al. Mutation of the mitochondrial carrier SLC25A42 causes a novel form of mitochondrial myopathy in humans. Hum Genet 135, 21–30 (2016). https://doi.org/10.1007/s00439-015-1608-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-015-1608-8

Keywords

Navigation