, Volume 260, Issue 2-3, pp 165-175

Duplication of the Rdl GABA receptor subunit gene in an insecticide-resistant aphid, Myzus persicae

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Resistance to cyclodiene insecticides is associated with replacements of a single amino acid (alanine 302) in a γ-aminobutyric acid (GABA) receptor subunit encoded by the single-copy gene Resistance to dieldrin (Rdl). Alanine 302 is predicted to reside within the second membrane-spanning region of the Rdl receptor, a region that is thought to line the integral chloride ion channel pore. In all cyclodiene-resistant insects studied to date, this same alanine residue is replaced either by a serine, or, in some resistant strains of Drosophila simulans, a glycine residue. Therefore, individuals can carry only two different Rdl alleles. In contrast, here we report the presence of up to four different Rdl-like alleles in individual clones of the green peach aphid, Myzus persicae. In addition to the wild-type copy of Rdl gene (encoding A302 or allele A), M. persicae carries three other alleles with the following amino acid replacements: A302 → Glycine (allele G), A302 → SerineTCG (allele S) and A302 → SerineAGT (allele S′). Evidence from direct nucleotide sequencing and Single Stranded Conformational Polymorphism (SSCP) analysis shows that at least three of these different Rdl alleles (i.e. A, G and S) are commonly present in individual aphids or aphid clones. Southern analysis using allele-specific probes and analysis of sequences downstream of the exon containing the resistance-associated mutation confirm the presence of two independent Rdl-like loci in M. persicae. One locus carries the susceptible alanine (A) and/or resistant glycine (G) allele while the other carries the two serine alleles (S or S′). Whereas resistance levels are correlated with the glycine replacement, the S allele was present in all aphid clones, regardless of their resistance status. These results suggest that target site insensitivity is associated with replacements at the first (A/G) but not the second (S/S′) locus. Phylogenetic analysis of nucleotide sequences indicates that both putative aphid Rdl loci are monophyletic with respect to other insect Rdl genes and may have arisen through a recent gene duplication event. The implications of this duplication with respect to insecticide resistance and insect GABA receptor subunit diversity are discussed.

Received: 10 March 1998 / Accepted: 21 July 1998