Skip to main content

Advertisement

Log in

De novo transcriptomic analysis and development of EST-SSR markers in the Siberian tiger (Panthera tigris altaica)

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The Siberian tiger, Panthera tigris altaica, is an endangered species, and much more work is needed to protect this species, which is still vulnerable to extinction. Conservation efforts may be supported by the genetic assessment of wild populations, for which highly specific microsatellite markers are required. However, only a limited amount of genetic sequence data is available for this species. To identify the genes involved in the lung transcriptome and to develop additional simple sequence repeat (SSR) markers for the Siberian tiger, we used high-throughput RNA-Seq to characterize the Siberian tiger transcriptome in lung tissue (designated ‘PTA-lung’) and a pooled tissue sample (designated ‘PTA’). Approximately 47.5 % (33,187/69,836) of the lung transcriptome was annotated in four public databases (Nr, Swiss-Prot, KEGG, and COG). The annotated genes formed a potential pool for gene identification in the tiger. An analysis of the genes differentially expressed in the PTA lung, and PTA samples revealed that the tiger may have suffered a series of diseases before death. In total, 1062 non-redundant SSRs were identified in the Siberian tiger transcriptome. Forty-three primer pairs were randomly selected for amplification reactions, and 26 of the 43 pairs were also used to evaluate the levels of genetic polymorphism. Fourteen primer pairs (32.56 %) amplified products that were polymorphic in size in P. tigris altaica. In conclusion, the transcriptome sequences will provide a valuable genomic resource for genetic research, and these new SSR markers comprise a reasonable number of loci for the genetic analysis of wild and captive populations of P. tigris altaica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afshari CA (2002) Perspective: microarray technology, seeing more than spots. Endocrinology 143:1983–1989

    Article  CAS  PubMed  Google Scholar 

  • Albrecht U, Sun ZS, Eichele G, Lee CC (1997) A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91:1055–1064

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Yang P, Jiang F, Wei Y, Ma Z, Kang L (2010) De novo analysis of transcriptome dynamics in the migratory locust during the development of phase traits. PLoS One 5:e15633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho YS, Hu L, Hou H, Lee H, Xu J, Kwon S, Oh S, Kim HM, Jho S, Kim S, Shin YA, Kim BC, Kim H, Kim CU, Luo SJ, Johnson WE, Koepfli KP, Schmidt-Kuntzel A, Turner JA, Marker L, Harper C, Miller SM, Jacobs W, Bertola LD, Kim TH, Lee S, Zhou Q, Jung HJ, Xu X, Gadhvi P, Xu P, Xiong Y, Luo Y, Pan S, Gou C, Chu X, Zhang J, Liu S, He J, Chen Y, Yang L, Yang Y, He J, Liu S, Wang J, Kim CH, Kwak H, Kim JS, Hwang S, Ko J, Kim CB, Kim S, Bayarlkhagva D, Paek WK, Kim SJ, O’Brien SJ, Wang J, Bhak J (2013) The tiger genome and comparative analysis with lion and snow leopard genomes. Nat Commun 4:2433

    PubMed  PubMed Central  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Cowley M, Oakey RJ (2013) Transposable elements re-wire and fine-tune the transcriptome. PLoS Genet 9:e1003234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng C, Chen M, Xu CJ, Bai L, Yin XR, Li X, Allan AC, Ferguson IB, Chen KS (2012) Transcriptomic analysis of Chinese bayberry (Myrica rubra) fruit development and ripening using RNA-Seq. BMC Genom 13:19

    Article  CAS  Google Scholar 

  • Frankham R (2008) Genetic adaptation to captivity in species conservation programs. Mol Ecol 17:325–333

    Article  PubMed  Google Scholar 

  • Garber M, Grabherr MG, Guttman M, Trapnell C (2011) Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods 8:469–477

    Article  CAS  PubMed  Google Scholar 

  • Gayral P, Melo-Ferreira J, Glemin S, Bierne N, Carneiro M, Nabholz B, Lourenco JM, Alves PC, Ballenghien M, Faivre N, Belkhir K, Cahais V, Loire E, Bernard A, Galtier N (2013) Reference-free population genomics from next-generation transcriptome data and the vertebrate-invertebrate gap. PLoS Genet 9:e1003457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldsmith EI (1978) The convention on international trade in endangered species of wild fauna and flora. J Med Primatol 7:122–124

    CAS  PubMed  Google Scholar 

  • Goodrich JM, Seryodkin I, Miquelle DG, Bereznuk SL (2011) Conflicts between Amour (Siberian) tigers and humans in the Russian Far East. Biol Conserv 144:584–592

    Article  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Liu C, Lu T, Liu D, Bai C, Li X, Ma Y, Guan W (2014) Generation and analysis of a large-scale expressed sequence tags from a full-length enriched cDNA library of Siberian tiger (Panthera tigris altaica). Gene 541:75–81

    Article  CAS  PubMed  Google Scholar 

  • Hertzano R, Elkon R, Kurima K, Morrisson A, Chan SL, Sallin M, Biedlingmaier A, Darling DS, Griffith AJ, Eisenman DJ, Strome SE (2011) Cell type-specific transcriptome analysis reveals a major role for Zeb1 and miR-200b in mouse inner ear morphogenesis. PLoS Genet 7:e1002309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin YH, Dunlap PE, McBride SJ, Al-Refai H, Bushel PR, Freedman JH (2008) Global transcriptome and deletome profiles of yeast exposed to transition metals. PLoS Genet 4:e1000053

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484

    Article  CAS  PubMed  Google Scholar 

  • Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    Article  CAS  PubMed  Google Scholar 

  • Liu CQ, Lu TF, Feng BG, Liu D, Guan WJ, Ma YH (2010) Construction of cDNA library and preliminary analysis of expressed sequence tags from Siberian tiger. Int J Biol Sci 6:584–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Jiang G, Zhang Y, Li J, Li X, Yue J, Chen F, Liu H, Li H, Zhu S, Wang J, Ran C (2011) Analysis of transcriptome differences between resistant and susceptible strains of the citrus red mite Panonychus citri (Acari: Tetranychidae). PLoS One 6:e28516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Liu D, Guo Y, Lu T, Li X, Zhang M, Ma J, Ma Y, Guan W (2013) Construction of a full-length enriched cDNA library and preliminary analysis of expressed sequence tags from Bengal Tiger Panthera tigris tigris. Int J Mol Sci 14:11072–11083

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo SJ, Kim JH, Johnson WE, van der Walt J, Martenson J, Yuhki N, Miquelle DG, Uphyrkina O, Goodrich JM, Quigley HB, Tilson R, Brady G, Martelli P, Subramaniam V, McDougal C, Hean S, Huang SQ, Pan W, Karanth UK, Sunquist M, Smith JL, O’Brien SJ (2004) Phylogeography and genetic ancestry of tigers (Panthera tigris). PLoS Biol 2:e442

    Article  PubMed  PubMed Central  Google Scholar 

  • Malone JH, Oliver B (2011) Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol 9:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marguerat S, Bahler J (2010) RNA-seq: from technology to biology. Cell Mol Life Sci 67:569–579

    Article  CAS  PubMed  Google Scholar 

  • Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathavan S, Lee SG, Mak A, Miller LD, Murthy KR, Govindarajan KR, Tong Y, Wu YL, Lam SH, Yang H, Ruan Y, Korzh V, Gong Z, Liu ET, Lufkin T (2005) Transcriptome analysis of zebrafish embryogenesis using microarrays. PLoS Genet 1:260–276

    Article  CAS  PubMed  Google Scholar 

  • Mohd-Shamsudin MI, Kang Y, Lili Z, Tan TT, Kwong QB, Liu H, Zhang G, Othman RY, Bhassu S (2013) In-depth tanscriptomic analysis on giant freshwater prawns. PLoS One 8:e60839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morell V (2007) Wildlife biology. Can the wild tiger survive? Science 317:1312–1314

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Nowell K, Ling X (2007) Taming the tiger trade: China’s markets for wild and captive tiger products since the 1993 domestic trade ban. TRAFFIC East Asia, Hong Kong, China

    Google Scholar 

  • Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651–652

    Article  CAS  PubMed  Google Scholar 

  • Ralls K, Ballou J (1986) Captive breeding programs for populations with a small number of founders. Trends Ecol Evol 1:19–22

    Article  CAS  PubMed  Google Scholar 

  • Spradling KD, Glenn JP, Garcia R, Shade RE, Cox LA (2013) The baboon kidney transcriptome: analysis of transcript sequence, splice variants, and abundance. PLoS One 8:e57563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, Seifert M, Borodina T, Soldatov A, Parkhomchuk D, Schmidt D, O’Keeffe S, Haas S, Vingron M, Lehrach H, Yaspo ML (2008) A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321:956–960

    Article  CAS  PubMed  Google Scholar 

  • Tao X, Gu YH, Wang HY, Zheng W, Li X, Zhao CW, Zhang YZ (2012) Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L.) Lam]. PLoS One 7:e36234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theis M, Si K, Kandel ER (2003) Two previously undescribed members of the mouse CPEB family of genes and their inducible expression in the principal cell layers of the hippocampus. Proc Natl Acad Sci USA 100:9602–9607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Y, Wu J, Smith AT, Wang T, Kou X, Ge J (2011) Population viability of the Siberian Tiger in a changing landscape: going, going and gone? Ecol Model 222(17):3166–3180

    Article  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Hu S, Liu W, Qiao Z, Gao Y, Bu Z (2011) Deep-sequencing analysis of the mouse transcriptome response to infection with Brucella melitensis strains of differing virulence. PLoS One 6:e28485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CH, Tsai MH, Ho CC, Chen CY, Lee HS (2013) De novo transcriptome sequencing of axolotl blastema for identification of differentially expressed genes during limb regeneration. BMC Genom 14:434

    Article  CAS  Google Scholar 

  • Xiao W, Feng L, Mou P, Miquelle DG, Hebblewhite M, Goldberg JF, Robinson HS, Zhao X, Zhou B, Wang T, Ge J (2016) Estimating abundance and density of Amur tigers along the Sino-Russian border. Integr Zool 11:322–332

    Article  PubMed  Google Scholar 

  • Xiaofeng L, Yi Q, Diqiang L, Shirong L, Xiulei W, Bo W, Chunquan Z (2011) Habitat evaluation of wild Amur tiger (Panthera tigris altaica) and conservation priority setting in north-eastern China. J Environ Manage 92:31–42

    Article  PubMed  Google Scholar 

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the “Heilongjiang Northeast Tiger Park” administration for the authorization of sample collection, and to the two anonymous reviewers for valuable suggestions. We also thank the BGI for the high-throughput RNA-Seq. The sequencing work was supported by the project National Infrastructure of Animal Germplasm Resources (2013), and the data analysis was supported by the National Key Technology Support Program (2015BAI07B02-02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyan Chen or Weijun Guan.

Ethics declarations

Funding

The sequencing work was supported by the project National Infrastructure of Animal Germplasm Resources (2013), and the data analysis was supported by the National Key Technology Support Program (2015BAI07B02-02).

Conflict of interest

Taofeng Lu declares that he has no conflict of interest. Yujiao Sun declares that she has no conflict of interest. Minghao Zhu declares that he has no conflict of interest. Dan Liu declares that he has no conflict of interest. Jianzhang Ma declares that he has no conflict of interest. Yuehui Ma declares that he has no conflict of interest. Hongyan Chen declares that he has no conflict of interest. Weijun Guan declares that he has no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Data availability

The clean reads data can be obtained from the NCBI Short Read Archive (SRA) under Accession Numbers SRR1014897 and SRR1015838.

Additional information

Communicated by S. Hohmann.

T. Lu and Y. Sun contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5168 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, T., Sun, Y., Ma, Q. et al. De novo transcriptomic analysis and development of EST-SSR markers in the Siberian tiger (Panthera tigris altaica). Mol Genet Genomics 291, 2145–2157 (2016). https://doi.org/10.1007/s00438-016-1246-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-016-1246-4

Keywords

Navigation