Skip to main content
Log in

Genome-wide analysis of the IQD gene family in maize

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

IQD gene family plays important roles in plant developmental processes and stress responses. To date, no systematic characterization of this gene family has been carried out in maize. In this study, 26 IQD genes, from ZmIQD1 to ZmIQD26, were identified using Blast search tools. The phylogenetic analysis showed these genes were divided into four subfamilies (IQD I–IV) and members within the same subfamily shared conserved exon/intron distribution and motif composition. The 26 ZmIQD genes are distributed unevenly on 8 of the 10 chromosomes, with 9 segmental duplication events, suggesting that the expansion of IQDs in maize was due to the segmental duplication. The analysis of Ka/Ks ratios showed that the duplicated ZmIQDs had primarily undergone strong purifying selection. In addition, the 26 ZmIQDs displayed different expression patterns at different developmental stages of maize based on transcriptome analysis. Further, quantitative real-time PCR analysis showed that all 26 ZmIQD genes were responsive to drought treatment, suggesting their crucial roles in drought stress response. Yeast two-hybrid assay proved that ZmIQD2 and ZmIQD15 can interact with ZmCaM2 and IQ or I in IQ motif is required for ZmIQD15 to combine with CaM2. Our results present a comprehensive overview of the maize IQD gene family and lay an important foundation for further analysis aimed at uncovering the biological functions of ZmIQDs in growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abel S, Savchenko T, Levy M (2005) Genome-wide comparative analysis of the IQD gene families in Arabidopsis thaliana and Oryza sativa. BMC Evol Biol 5:72

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailey TL, Elkan C (1995) The value of prior knowledge in discovering motifs with MEME. Proc Int Conf Intell Syst Mol Biol 3:21–29

    CAS  PubMed  Google Scholar 

  • Batistic O, Kudla J (2012) Analysis of calcium signaling pathways in plants. Bba-Gen Subjects 1820(8):1283–1293

    Article  CAS  Google Scholar 

  • Bennetzen JL, Ma JX, Devos K (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot-London 95(1):127–132

    Article  CAS  Google Scholar 

  • Bhattacharya S, Bunick CG, Chazin WJ (2004) Target selectivity in EF-hand calcium binding proteins. Bba-Mol Cell Res 1742(1–3):69–79

    CAS  Google Scholar 

  • Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16(7):1667–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowe LM, Coat G, dePamphilis CW (2000) Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proc Natl Acad Sci USA 97(8):4092–4097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai XF, Zhang YY, Zhang CJ, Zhang TY, Hu TX, Ye J, Zhang JH, Wang TT, Li HX, Ye ZB (2013) Genome-wide Analysis of Plant-specific Dof Transcription Factor Family in Tomato. J Integr Plant Biol 55(6):552–566

    Article  CAS  PubMed  Google Scholar 

  • Cai RH, Zhao Y, Wang YF, Lin YX, Peng XJ, Li Q, Chang YW, Jiang HY, Xiang Y, Cheng BJ (2014) Overexpression of a maize WRKY58 gene enhances drought and salt tolerance in transgenic rice. Plant Cell Tiss Org 119(3):565–577

    Article  CAS  Google Scholar 

  • Chin D, Means AR (2000) Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10(8):322–328

    Article  CAS  PubMed  Google Scholar 

  • Clapperton JA, Martin SR, Smerdon SJ, Gamblin SJ, Bayley PM (2002) Structure of the complex of calmodulin with the target sequence of calmodulin-dependent protein kinase I: studies of the kinase activation mechanism. Biochemistry-Us 41(50):14669–14679

    Article  CAS  Google Scholar 

  • DeFalco TA, Bender KW, Snedden WA (2010) Breaking the code: Ca2+ sensors in plant signalling. Biochem J 425:27–40

    Article  CAS  Google Scholar 

  • Feng L, Chen Z, Ma H, Chen X, Li Y, Wang YY, Xiang Y (2014) The IQD gene family in soybean: structure, phylogeny, evolution and expression. Plos ONE 9(10):e110896

    Article  PubMed  PubMed Central  Google Scholar 

  • Filiz E, Tombuloglu H, Ozyigit II (2013) Genome-wide analysis of IQ67 domain (IQD) gene families in Brachypodium distachyon. Plant Omics 6(6):425–432

    CAS  Google Scholar 

  • Finn RD, Mistry J, Schuster-Böckler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R (2006) Pfam: clans, web tools and services. Nucleic Acids Res 34(suppl 1):D247–D251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaut BS, Morton BR, McCaig BC, Clegg MT (1996) Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci USA 93(19):10274–10279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Anduro G, Ceniceros-Ojeda EA, Casados-Vazquez LE, Bencivenni C, Sierra-Beltran A, Murillo-Amador B, Tiessen A (2011) Genome-wide analysis of the beta-glucosidase gene family in maize (Zea mays L. var B73). Plant Mol Biol 77(1–2):159–183

    Article  CAS  PubMed  Google Scholar 

  • Guo AY, Zhu QH, Chen X, Luo JC (2007) GSDS: a gene structure display server. Yi Chuan 29(8):1023–1026

    Article  CAS  PubMed  Google Scholar 

  • Hedges SB (2002) The origin and evolution of model organisms. Nat Rev Genet 3(11):838–849

    Article  CAS  PubMed  Google Scholar 

  • Hetherington AM, Brownlee C (2004) The generation of Ca2+ signals in plants. Annu Rev Plant Biol 55:401–427

    Article  CAS  PubMed  Google Scholar 

  • Huang ZJ, Van Houten J, Gonzalez G, Xiao H, van der Knaap E (2013) Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato. Mol Genet Genomics 288(3–4):111–129

    Article  CAS  PubMed  Google Scholar 

  • Jiang HY, Wu QQ, Jin J, Sheng L, Yan HW, Cheng BJ, Zhu SW (2013) Genome-wide identification and expression profiling of ankyrin-repeat gene family in maize. Dev Genes Evol 223(5):303–318

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Peterson D, Tamura K (2012) MEGA-CC: computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis. Bioinformatics 28(20):2685–2686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P (2004) SMART 4.0: towards genomic data integration. Nucleic Acids Res 32:D142–D144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy M, Wang QM, Kaspi R, Parrella MP, Abel S (2005) Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense. Plant J 43(1):79–96

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Jiang HY, Zhou LY, Deng L, Lin YX, Peng XJ, Yan HW, Cheng BJ (2014) Molecular evolution of the HD-ZIP I gene family in legume genomes. Gene 533(1):218–228

    Article  CAS  PubMed  Google Scholar 

  • Liu YK, Zhang D, Wang L, Li DQ (2013) Genome-wide analysis of mitogen-activated protein kinase gene family in maize. Plant Mol Biol Rep 31(6):1446–1460

    Article  CAS  Google Scholar 

  • Liu W, Li W, He QL, Daud MK, Chen JH, Zhu SJ (2014) Genome-wide survey and expression analysis of calcium-dependent protein kinase in gossypium raimondii. PLoS ONE 9(6):e98189

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma H, Feng L, Chen Z, Chen X, Zhao HL, Xiang Y (2014) Genome-wide identification and expression analysis of the IQD gene family in Populus trichocarpa. Plant Sci 229:96–110

    Article  CAS  PubMed  Google Scholar 

  • Peng XJ, Zhao Y, Cao JG, Zhang W, Jiang HY, Li XY, Ma Q, Zhu SW, Cheng BJ (2012) CCCH-type zinc finger family in maize: genome-wide identification, classification and expression profiling under abscisic acid and drought treatments. PLoS ONE 7(7):e40120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy ASN (2001) Calcium: silver bullet in signaling. Plant Sci 160(3):381–404

    Article  CAS  PubMed  Google Scholar 

  • Rhoads AR, Friedberg F (1997) Sequence motifs for calmodulin recognition. FASEB J 11(5):331–340

    CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei FS, Pasternak S, Liang CZ, Zhang JW, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du FY, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen WZ, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He RF, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin JK, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren LY, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han YJ, Lee H, Li PH, Lisch DR, Liu SZ, Liu ZJ, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang LX, Yu Y, Zhang LF, Zhou SG, Zhu Q, Bennetzen JL, Dawe RK, Jiang JM, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Sekhon RS, Briskine R, Hirsch CN, Myers CL, Springer NM, Buell CR, de Leon N, Kaeppler SM (2013) Maize gene atlas developed by RNA sequencing and comparative evaluation of transcriptomes based on RNA sequencing and microarrays. PLoS ONE 8(4):e61005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H (2007) Integration of Ca2+ in plant drought and salt stress signal transduction pathways. Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Springer, pp 141–182

  • Simillion C, Vandepoele K, Van Montagu MCE, Zabeau M, Van de Peer Y (2002) The hidden duplication past of Arabidopsis thaliana. Proc Natl Acad Sci USA 99(21):13627–13632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snedden WA, Fromm H (2001) Calmodulin as a versatile calcium signal transducer in plants. New Phytol 151(1):35–66

    Article  CAS  Google Scholar 

  • Sonnhammer ELL, Koonin EV (2002) Orthology, paralogy and proposed classification for paralog subtypes. Trends Genet 18(12):619–620

    Article  CAS  PubMed  Google Scholar 

  • Suyama M, Torrents D, Bork P (2006) PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 34:W609–W612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swigonova Z, Lai JS, Ma JX, Ramakrishna W, Llaca V, Bennetzen JL, Messing J (2004) Close split of sorghum and maize genome progenitors. Genome Res 14(10A):1916–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278(5338):631–637

    Article  CAS  PubMed  Google Scholar 

  • Team RC (2012) R:a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2012 ISBN 3-900051-07-0

  • Wang XY, Shi XL, Hao BL, Ge S, Luo JC (2005) Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 165(3):937–946

    Article  CAS  PubMed  Google Scholar 

  • Wang LQ, Guo K, Li Y, Tu YY, Hu HZ, Wang BR, Cui XC, Peng LC (2010) Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biol 10:282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei F, Coe E, Nelson W, Bharti AK, Engler F, Butler E, Kim H, Goicoechea JL, Chen M, Lee S, Fuks G, Sanchez-Villeda H, Schroeder S, Fang Z, McMullen M, Davis G, Bowers JE, Paterson AH, Schaeffer M, Gardiner J, Cone K, Messing J, Soderlund C, Wing RA (2007) Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet 3(7):1254–1263

    Article  CAS  Google Scholar 

  • Wei KF, Chen J, Chen YF, Wu LJ, Xie DX (2012) Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize. DNA Res 19(2):153–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Xiao H, Cabrera A, Meulia T, van der Knaap E (2011) SUN regulates vegetative and reproductive organ shape by changing cell division patterns. Plant Physiol 157(3):1175–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319(5869):1527–1530

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Yamniuk AP, Vogel HJ (2004) Calmodulin’s flexibility allows for promiscuity in its interactions with target proteins and peptides. Mol Biotechnol 27(1):33–57

    Article  CAS  PubMed  Google Scholar 

  • Yang ZH (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Yang TB, Poovaiah BW (2003) Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci 8(10):505–512

    Article  CAS  PubMed  Google Scholar 

  • Zentella R, Zhang ZL, Park M, Thomas SG, Endo A, Murase K, Fleet CM, Jikumaru Y, Nambara E, Kamiya Y, Sun TP (2007) Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 19(10):3037–3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Zhou YQ, Jiang HY, Li XY, Gan DF, Peng XJ, Zhu SW, Cheng BJ (2011) Systematic analysis of sequences and expression patterns of drought-responsive members of the HD-Zip gene family in maize. PLoS ONE 6(12):e28488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou YP, Duan J, Fujibe T, Yamamoto KT, Tian CE (2012) AtIQM1, a novel calmodulin-binding protein, is involved in stomatal movement in Arabidopsis. Plant Mol Biol 79(4–5):333–346

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research work was supported by Genetically Modified Organisms Breeding Major Projects (2011ZX08-010-002-003), National Basic Research Program of China (973 Program) (2014CB138204), National Key Technology Support Program (2012BAD20B02), Natural Science Research for Colleges and Universities of Anhui Province, China (KJ2013A123).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Xiang or Beijiu Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by S. Hohmann.

R. Cai and C. Zhang contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, R., Zhang, C., Zhao, Y. et al. Genome-wide analysis of the IQD gene family in maize. Mol Genet Genomics 291, 543–558 (2016). https://doi.org/10.1007/s00438-015-1122-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-1122-7

Keywords

Navigation