Skip to main content
Log in

Pigment cell distribution in a rapid colour changing amphibian (Litoria wilcoxii)

  • Original Article
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

Rapid skin colour changes in amphibians and other colour changing animals are possible due to different distributions of pigment cells (chromatophores) and the movement of pigment within them. Amphibians possess three types of chromatophore: xanthophores, iridophores and melanophores which are collectively referred to as the dermal chromatophore unit. Male stony creek frogs (Litoria wilcoxii) are capable of undergoing rapid colour change from brown to yellow during amplexus. Based on previous studies, it is expected that this is achieved through a change in chromatophore distribution or pigment movement within chromatophores. We examined brown and yellow dorsal skin samples from male L. wilcoxii using light microscopy which allowed us to determine differences in chromatophore and pigment distribution between each colour phase. Additionally, we compared thigh skin sections, which are comprised of permanently yellow and black patches. We found that in dorsal skin sections of yellow frogs, melanophore pigment granules had aggregated to the centre of the melanophore underneath the yellow xanthophore, whilst pigment was dispersed throughout the melanophores, partially covering the xanthophores in brown frogs. Black thigh sections consisted of elongated melanophores, other cell types appeared to be absent. In contrast, yellow thigh sections contained only xanthophores. This study demonstrates that the process of colour change in L. wilcoxii is through pigment aggregation and dispersion within melanophores. In addition, we show that there is significant variation in pigment cell distribution between colour changing and non-colour changing integument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adobe Systems (2010) Adobe photoshop extended, vol C35. Adobe Systems Incorporated, San Jose

    Google Scholar 

  • Ali SA, Naaz I (2014) Comparative light and electron microscopic studies of dorsal skin melanophores of Indian toad, Bufo melanostictus. J Microsc Ultrastruct 2:230–235

    Article  Google Scholar 

  • Aspengren S, Hedberg D, Sköld HN, Wallin M (2008) New insights into melanosome transport in vertebrate pigment cells, chapter 6. In: Kwang WJ (ed) International review of cell and molecular biology, vol 272. Academic Press, New York, pp 245–302

    Google Scholar 

  • Aspengren S, Skold HN, Wallin M (2009) Different strategies for color change. Cell Mol Life Sci 66:187–191. doi:10.1007/s00018-008-8541-0

    Article  CAS  PubMed  Google Scholar 

  • Bagnara JT (1964) Stimulation of melanophores and guanophores by melanophore-stimulating hormone peptides. Gen Comp Endocrinol 4:290–294. doi:10.1016/0016-6480(64)90024-3

    Article  CAS  PubMed  Google Scholar 

  • Bagnara JT (1966) Cytology and cytophysiology of non-melanophore pigment cells. In: Bourne GH, Danielli JF (eds) International review of cytology, vol 20. Academic Press, New York, pp 173–205. doi:10.1016/S0074-7696(08)60801-3

    Chapter  Google Scholar 

  • Bagnara JT, Hadley ME (1973) Chromatophores and color change: the comparative physiology of animal pigmentation. Pearson Education, New York

    Google Scholar 

  • Bagnara JT, Taylor JD, Hadley ME (1968) Dermal chromatophore unit. J Cell Biol 38:67–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagnara JT, Hadley ME, Taylor JD (1969) Regulation of bright-colored pigmentation of amphibians. Gen Comp Endocrinol 2:425–438. doi:10.1016/0016-6480(69)90052-5

    Article  Google Scholar 

  • Baker BI (1993) The role of melanin-concentrating hormone in color change. Ann N Y Acad Sci 680:279–289. doi:10.1111/j.1749-6632.1993.tb19690.x

    Article  CAS  PubMed  Google Scholar 

  • Bell RC, Zamudio KR (2012) Sexual dichromatism in frogs: natural selection, sexual selection and unexpected diversity. Proc R Soc B 279:4687–4693. doi:10.1098/rspb.2012.1609

    Article  PubMed  PubMed Central  Google Scholar 

  • Berns MW, Narayan KS (1970) An histochemical and ultrastructural analysis of the dermal chromatophores of the variant ranid blue frog. J Morphol 132(2):169–179. doi:10.1002/jmor.1051320205

    Article  Google Scholar 

  • Camargo CR, Visconti MA, Castrucci AML (1999) Physiological color change in the bullfrog, Rana catesbeiana. J Exp Zool 283:160–169

    Article  CAS  PubMed  Google Scholar 

  • Costanzo J, Lee R (1991) Freeze-thaw injury in erythrocytes of the freeze-tolerant wood frog, Rana sylvatica. Am J Physiol Regul Integr Comp Physiol 261:R1346–R1350

    CAS  Google Scholar 

  • Duellman WE, Trueb L (1986) Biology of amphibians. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Ferraro DP, Topa PE, Hermida GN (2013) Lumbar glands in the frog genera Pleurodema and Somuncuria (Anura: Leiuperidae): histological and histochemical perspectives. Acta Zool 94:44–57. doi:10.1111/j.1463-6395.2011.00529.x

    Article  Google Scholar 

  • Fox H (1994) The structure of the integument, amphibian biology: the integument, vol 1. Surrey Beatty, Chipping Norton

    Google Scholar 

  • Frost-Mason SK, Morrison RL, Mason K (1994) Pigmentation, chaper 3. In: Heatwole H, Barthalmus G (eds) Amphibian biology: the integument, vol 1. Surrey Beatty, Chipping Norton

    Google Scholar 

  • Fujii R (2000) The regulation of motile activity in fish chromatophores. Pigment Cell Res 13:300–319

    Article  CAS  PubMed  Google Scholar 

  • Green JP (1964) Morphological colour change in the fidler crab, Uca pugnax (S. I. Smith). Biol Bull 127:239–255

    Article  Google Scholar 

  • Hirata M, Nakamura KI, Kondo S (2005) Pigment cell distributions in different tissues of the zebrafish, with special reference to the striped pigment pattern. Dev Dyn 234:293–300

    Article  CAS  PubMed  Google Scholar 

  • Kindermann C, Narayan EJ, Wild F, Wild CH, Hero J-M (2013) The effect of stress and stress hormones on dynamic colour-change in a sexually dichromatic Australian frog. Comp Biochem Physiol A Mol Integr Physiol. doi:10.1016/j.cbpa.2013.03.011

    PubMed  Google Scholar 

  • Kindermann C, Narayan EJ, Hero J-M (2014) The neuro-hormonal control of rapid dynamic skin colour change in an amphibian during amplexus. PLoS One 9:e114120

    Article  PubMed  PubMed Central  Google Scholar 

  • Kobelt F, Linsenmair KE (1986) Adaptations of the reed frog Hyperolius viridiflavus to its arid environment. I. The skin of Hyperolius viridiflavus nitidulus in wet and dry season conditions. Oecologia 68:533–541

    Article  Google Scholar 

  • Kuriyama T, Miyaji K, Sugimoto M, Hasegawa M (2006) Ultrastructure of the dermal chromatophores in a lizard (Scincidae: Plestiodon latiscutatus) with conspicuous body and tail coloration. Zool Sci 23:793–799. doi:10.2108/zsj.23.793

    Article  PubMed  Google Scholar 

  • Matsumoto J (1965) Studies on fine structure and cytochemical properties of erythrophores in swordtail, Xiphophorus helleri, with special reference to their pigment granules (pterinosomes). J Cell Biol 27:493–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills MG, Patterson LB (2009) Not just black and white: pigment pattern development and evolution in vertebrates. Semin Cell Dev Biol 20(1):72–81. doi:10.1016/j.semcdb.2008.11.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen HI (1978) The effect of stress and adrenaline on the color of Hyla cinerea and Hyla arborea. Gen Comp Endocrinol 36:543–552. doi:10.1016/0016-6480(78)90094-1

    Article  CAS  PubMed  Google Scholar 

  • Nilsson Sköld H, Aspengren S, Wallin M (2013) Rapid color change in fish and amphibians—function, regulation, and emerging applications. Pigment Cell Melanoma Res 26(1):29–38. doi:10.1111/pcmr.12040

    Article  PubMed  Google Scholar 

  • Richards CM (1982) The alteration of chromatophore expression by sex hormones in the kenyan reed frog, Hyperolius viridiflavus. Gen Comp Endocrinol 46:59–67. doi:10.1016/0016-6480(82)90163-0

    Article  CAS  PubMed  Google Scholar 

  • Sztatecsny M, Preininger D, Freudmann A, Loretto M-C, Maier F, Hödl W (2012) Don’t get the blues: conspicuous nuptial colouration of male moor frogs (Rana arvalis) supports visual mate recognition during scramble competition in large breeding aggregations. Behav Ecol Sociobiol 66:1587–1593

    Article  PubMed  PubMed Central  Google Scholar 

  • Szydłowski P, Madej JP, Mazurkiewicz-Kania M (2015) Ultrastructure and distribution of chromatophores in the skin of the leopard gecko (Eublepharis macularius). Acta Zool. doi:10.1111/azo.12132

    Google Scholar 

  • Tang Z-J et al (2014) The hormonal regulation of color changes in the sexually dichromatic frog Buergeria robusta. Physiol Biochem Zool 87:397–410. doi:10.1086/675678

    Article  CAS  PubMed  Google Scholar 

  • Taylor JD, Bagnara JT (1972) Dermal chromatophores. Am Zool 12:43–62

    Article  Google Scholar 

  • Withers P (1995) Evaporative water loss and colour change in the Australian desert tree frog Litoria rubella (Amphibia: Hylidae). Rec West Aus Mus 17:277–282

    Google Scholar 

  • Yasutomi M, Yamada S (1998) Formation of the dermal chromatophore unit (DCU) in the tree frog Hyla Arborea. Pigment Cell Res 11:198–205. doi:10.1111/j.1600-0749.1998.tb00730.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Darryl Whitehead and the team at the University of Queensland, School of Biomedical Sciences Histology facility, for providing the training and equipment to conduct this study and Basam Tabet and Kyle Lamont for assistance with image analysis. This study is part of CK Ph.D. research funded by the School of Environment at Griffith University. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. Thanks to the anonymous reviewers for providing valuable comments to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Kindermann.

Additional information

Communicated by A. Schmidt-Rhaesa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kindermann, C., Hero, JM. Pigment cell distribution in a rapid colour changing amphibian (Litoria wilcoxii). Zoomorphology 135, 197–203 (2016). https://doi.org/10.1007/s00435-016-0303-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-016-0303-1

Keywords

Navigation