Skip to main content
Log in

Ocular morphology, topography of ganglion cell distribution and visual resolution of the pilot whale (Globicephala melas)

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

The ocular morphology, morphological characteristics and topography of ganglion cell distribution were studied in four eyes of Globicephala melas to estimate the retinal resolution. The ganglion cell layer was composed of a single row of ganglion cells with a primarily round shape and a cell size which varied from 10 to 75 µm (mean 33.5 µm) in diameter. The typical feature was that 65 % of ganglion cells had a diameter larger than 25 µm, with a similar average size in all regions of the retina. The total number of ganglion cells (183,000–218,000; mean 203,000) was distributed in several isodensity lines with two definite areas of high cell density: one area was located in the temporal retinal area, and the other one in the nasal retina, at 65° ± 5° from the optic disk. A surprising result was the presence of a third cell density peak in the dorsal region of one retina. The mean peak cell densities of three retinas were 268 and 267 cells/mm2 in the nasal and temporal areas, respectively, and 287 cells/mm2 in the third peak of the dorsal region. Finally, the underwater retinal resolution, calculated from posterior nodal distance and the peak cell density, was 10.9′ (2.8 cycles/degree) in both nasal and temporal retinal areas, whereas the aerial resolution was 14.5′ (2.1 cycles/degree). These data suggest that G. melas has a visual acuity similar to other cetaceans investigated so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Birndorf L, Pérez J (1972) Gross anatomy and optics of the dolphin eye. Cetology 10:1–12

    Google Scholar 

  • Bjerager P, Heegaard S, Tougaard J (2003) Anatomy of the eye of the sperm whale (Physeter macrocephalus L.). Aquat Mammal 29:31–36

    Article  Google Scholar 

  • Buono MR, Fernández MS, Herrera Y (2012) Morphology of the eye of the southern right whales (Eubalaena australis). Anat Rec 295:355–368

    Article  Google Scholar 

  • Coimbra JP, Hart NS, Collin SP, Manger PR (2013) Scene from above: retinal ganglion cell topography and spatial resolving power in the giraffe (Giraffa camelopardalis). J Comp Neurol 521(9):2042–2057

    Article  PubMed  Google Scholar 

  • Collin SP (1999) Behavioural ecology and retinal cell topography. In: Archer SN, Djamgoz MBS, Loew ER, Partridge JC, Vellarga S (eds) Adaptive mechanism in the ecology of vision. Chapman & Hall, London, pp 509–535

    Chapter  Google Scholar 

  • Collin SP (2008) A web-based archive for topographic maps of retinal cell distribution in vertebrates. Clin Exp Optom 91(1):85–95

    Article  PubMed  Google Scholar 

  • Collin SP, Pettigrew JD (1989) Quantitative comparison of the limits on visual spatial resolution set by the ganglion cell layer in twelve species of reef teleosts. Brain Behav Evol 34:184–192

    Article  CAS  PubMed  Google Scholar 

  • Dawson WW (1988) The Cetacean eye. In: Herman LM (ed) Cetacean behaviour: mechanisms and functions. Willey Interscience, New York, pp 53–100

    Google Scholar 

  • Dawson WW, Perez JM (1973) Unusual retinal cells in the dolphin eye. Science 181:747–749

    Article  CAS  PubMed  Google Scholar 

  • Dawson WW, Hawthorne MN, Jenkins RL, Goldston RT (1982) Giant neural system in the inner retina and optic nerve of small whales. J Comp Neurol 205:1–7

    Article  CAS  PubMed  Google Scholar 

  • Dawson WW, Shroeder JP, Sharpe SN (1987) Corneal surface properties of two marine mammal species. Mar Mamm Sci 3:186–197

    Article  Google Scholar 

  • Dral ADG (1972) Aquatic and aerial vision in the bottle-nosed dolphin. Neth J Sea Res 5:510–513

    Article  Google Scholar 

  • Dral ADG (1974) Some quantitative aspects of the retina of Tursiops truncatus. Aquat Mamm 2:28–31

    Google Scholar 

  • Dral ADG (1977) On the retinal anatomy of Cetacea (mainly Tursiops truncatus). In: Harrison RJ (ed) Functional anatomy of marine mammals. Academic Press, London, pp 81–134

    Google Scholar 

  • Dral ADG (1983) The retinal ganglion cells of Delphinus delphis and their distribution. Aquat Mamm 10:57–68

    Google Scholar 

  • Fernald RD (1990) The optical system of fishes. In: Douglas R, Djamgoz M (eds) The visual system of fish. Chapman and Hall, New York, pp 45–61

    Google Scholar 

  • Fordyce RE, Barnes LG (1994) The evolutionary history of whales and dolphins. Annu Rev Earth Planet Sci 22(1):419–455

    Article  Google Scholar 

  • Frisen L, Frisen M (1976) A simple relationship between the probability distribution of visual acuity and density of retinal output channels. Acta Opthalmol 54:437–443

    Article  CAS  Google Scholar 

  • Fukuda Y, Stone J (1974) Retinal distribution and central projections of Y-, X-, and W-cells of the cat’s retina. J Neurophysiol 37:749–772

    CAS  PubMed  Google Scholar 

  • Gao A, Zhou K (1987) On the retinal ganglion cells of Neophocaena and Lipotes. Acta Zool Sinica 33:316–323

    Google Scholar 

  • Gao A, Zhou K (1992) Fiber analysis of the optic and cochlear nerves of small cetaceans. In: Thomas JA, Kastelein RA, Supin AY (eds) Marine mammal sensory systems. Plenum, New York, pp 39–52

    Google Scholar 

  • Griebel U (2002) Color vision in marine mammals: a review. In: Bright M, Dworschak PC, Stachowitsch M (eds) The Vienna School of Marine Biology: a tribute to Jörg Ott. Facultas Universitätsverlag, Wien, pp 73–87

  • Hebel R (1976) Distribution of retinal ganglion cells in five mammalian species (pig, sheep, ox, horse, dog). Anat Embriol 150:45–51

    CAS  Google Scholar 

  • Henderson A, Finlay BL, Wikler KC (1988) Development of ganglion cell topography in ferret retina. J Neursoci 8(4):1194–1205

    CAS  Google Scholar 

  • Herman LM (1990) Cognitive performance of dolphins in visually guided tasks. In: Thomas JA, Kastelein RA (eds) Sensory abilities of cetaceans. Plenum Press, New York, pp 455–462

    Chapter  Google Scholar 

  • Herman LM, Peacock MF, Yunker MP, Madsen CJ (1975) Bottlenose dolphin: doubles lit pupils yields equivalent aerial and underwater diurnal acuity. Science 189:650–652

    Article  CAS  PubMed  Google Scholar 

  • Hughes A (1975) A quantitative analysis of the cat retinal ganglion cell topography. J Comp Neurol 163:107–128

    Article  CAS  PubMed  Google Scholar 

  • Hughes A (1977) The topography of vision in mammals of contrasting life style: comparative optics and retinal organization. In: Crescitelli F (ed) Handbook of sensory physiology. Springer, New York, pp 613–756

    Google Scholar 

  • Hughes A (1981) Population magnitudes and distribution of the major modal classes of cat retinal ganglion cell as estimated from HRP filling and systematic survey of the soma diameter spectra for classical neurons. J Comp Neurol 197:303–339

    Article  CAS  PubMed  Google Scholar 

  • Hughes A (1985) New perspectives in retinal organization. In: Osbdorne N, Chader G (eds) Progress in retinal research. Pergamon Press, Oxford, pp 243–313

    Google Scholar 

  • Kastelein RA, Zweypfennig RCVJ, Spekreijse H (1990) Anatomical and histological characteristics of the eyes of a month-old and an adult harbor porpoise (Phocoena phocoena). In: Thomas JA, Kastelein RA (eds) Sensory abilities of cetaceans. Plenum, New York, pp 463–480

    Chapter  Google Scholar 

  • Kröger R, Katzir G (2008) Comparative anatomy and physiology of vision in aquatic tetrapods. In: Thewissen JGM and Numela S (eds) Sensory evolution on the threshold: adaptations in secondarily aquatic vertebrates. University of California Press, Berkeley, Los Angeles, California, pp 121–148

  • Kröger R, Kirschfeld K (1990) The cornea as an optical element in the cetacean eye. In: Thomas J, Kastelein R (eds) Sensory abilities of cetaceans. Plenum Press, New York, pp 97–106

    Google Scholar 

  • Kröger R, Kirschfeld K (1993) Optics of the harbor porpoise eye in water. J Opt Soc Am A: 10(7):1481–1489

    Article  Google Scholar 

  • Kröger R, Kirschfeld K (1994) Refractive index in the cornea of a harbor porpoise (Phocoena phocoena) measured by two-wavelengths laser-interferometry. Aquat Mamm 20:99–107

    Google Scholar 

  • Madsen CJ, Herman LM (1980) Social and ecological correlates of cetacean vision and visual appearance. In: Herman LM (ed) Cetacean behaviour: mechanisms and functions. Willey Interscience, New York, pp 101–147

    Google Scholar 

  • Mass AM (1996) Regions of increased density of the ganglion cells and resolution of the retina of the grey whale Eschrichtius robustus. Dokl Akad Nauk 350:139–142

    CAS  PubMed  Google Scholar 

  • Mass AM, Supin AY (1989) Distribution of ganglion cells in the retina of an Amazon river dolphin Inia geoffrensis. Aquat Mamm 15:49–56

    Google Scholar 

  • Mass AM, Supin AY (1990) Best vision zones in the retinae of some cetaceans. In: Thomas J, Kastelein R (eds) Sensory abilities of cetaceans. Plenum Press, New York, pp 505–517

    Chapter  Google Scholar 

  • Mass AM, Supin AY (1995) Ganglion cells topography of the retina in the bottlenosed dolphin, Tursiops truncatus. Brain Behav Evol 45:257–265

    Article  CAS  PubMed  Google Scholar 

  • Mass AM, Supin AY (1997) Ocular anatomy, retinal ganglion cell distribution, and visual resolution in the gray whale, Eschichtius robustus. Aquat Mamm 23:17–28

    Google Scholar 

  • Mass AM, Supin AY (1999) Retinal topography and visual acuity in the riverine tucuxi (Sotalia fluviatilis). Mar Mammal Sci 15:351–365

    Article  Google Scholar 

  • Mass AM, Supin AY (2002) Visual field organization and retinal resolution of the beluga, Delphinapterus leucas (Pallas). Aquat Mamm 28:241–250

    Google Scholar 

  • Mass AM, Supin AY (2003) Retinal topography of the harp seal Pagophilus groenlandicus. Brain Behav Evol 62:212–222

    Article  PubMed  Google Scholar 

  • Mass AM, Supin AY (2007) Adaptive features of aquatic mammals’ eye. Anat Rec 290:701–715

    Article  Google Scholar 

  • Mass AM, Supin AY, Severtsov AN (1986) Topographic distribution of sizes and density of ganglion cells in the retina of a porpoise Phocoena phocoena. Aquat Mamm 12:95–102

    Google Scholar 

  • Mass AM, Supin AY, Mukhametov LM, Rozanova EI, Abramov AV (2012) Morphological estimation of retinal resolution of a killer whale (Orcinus orca). Dokl Biol Sci 442:34–37

    Article  CAS  PubMed  Google Scholar 

  • Mazzatenta A, Caleo M, Baldaccini N, Maffei L (2001) A comparative morphometric analysis of the optic nerve in two cetacean species, the striped dolphin (Stenella coeruleoalba) and fin whale (Balaenoptera physalus). Visual Neurosci 18:319–325

    Article  CAS  Google Scholar 

  • Mobley JR, Helweg DA (1990) Visual ecology and cognition in cetaceans. In: Thomas JA, Kastelein RA (eds) Sensory abilities of cetaceans. Plenum Press, New York, pp 519–536

    Chapter  Google Scholar 

  • Murayama T, Somiya H (1998) Distribution of ganglion cells and object localizing ability in the retina of three cetaceans. Fish Sci 64:27–30

    CAS  Google Scholar 

  • Murayama T, Fujise Y, Aoki I, Ishii T (1992) Histological characteristics and distribution of ganglion cells in the retina of the Dall’s porpoise and Minke whale. In: Thomas JA, Kastelein RA (eds) Sensory abilities of cetaceans. Plenum, New York, pp 137–145

    Google Scholar 

  • Murayama T, Somiya H, Aoki I, Ishii T (1995) Retinal ganglion cell size and distribution predict visual capabilities of Dall’s porpoise. Mar Mammal Sci 11:136–149

    Article  Google Scholar 

  • Nachtigall PE (1986) Vision, audition and chemoreception in dolphins and other marine mammals. In: Schusterman JA, Thomas JA, Wood FG (eds) Dolphin cognition and behavior: a comparative approach. Lawrence Erlbaum Associates, Hillsdale, pp 79–113

    Google Scholar 

  • Ollivier FJ, Samuelson DA, Brooks DE, Lewis PA, Kallberg A, Komáromy M (2004) Comparative morphology of the tapetum lucidum (among selected species). Vet Ophthalmol 7(1):11–22

    Article  CAS  PubMed  Google Scholar 

  • Peers B (1971) The retinal histology of the atlantic bottlenose dolphin Tursiops truncatus (Montagu, 1821). Thesis, Univ. of Guelph

  • Peichl L (1991) Alpha ganglion cells in mammalian retinae: common properties, species differences, and some comments on other ganglion cells. Vis Neurosci 7:155–169

    Article  CAS  PubMed  Google Scholar 

  • Peichl L (1992) Topography of ganglion cells in the dog and wolf retina. J Comp Neurol. 324:603–620

    Article  CAS  PubMed  Google Scholar 

  • Peichl L, Ott H, Boycott BB (1987) Alpha ganglion cells in mammalian retinae. Proc R Soc Lond B Biol Sci 231:169–197

    Article  CAS  PubMed  Google Scholar 

  • Pepper RL, Simmons JV (1973) Air visual acuity of the bottlenose dolphin. Exp Neurol 41:271–276

    Article  CAS  PubMed  Google Scholar 

  • Perez JM, Dawson WW, Landau D (1972) In air visual acuity of the bottlenose dolphin (Tursiops truncatus). Cetology 11:1–11

    Google Scholar 

  • Pilleri G, Wandeler A (1964) Developmental and functional anatomy of the eyes of the fin whale Balenoptera physalus. Acta Anat Suppl 57:1–74

    Google Scholar 

  • Rodieck RW (1973) The vertebrate retina: principles of structure and function. Freeman WH, San Francisco

    Google Scholar 

  • Rodrigues FM, Silva FM, Trompieri-Silveira AC, Vergara-Parente JE, Miglino MA, Guimarães JP (2014) Morphology of the eyeball from the Humpback whale (Megaptera novaeangliae). Microsc Res Tech 77(5):348–355

    Article  PubMed  Google Scholar 

  • Shand J, Chin SM, Harman AM, Moore S, Collin SP (2000) Variability in the location of the retinal ganglion cell area centralis is correlated with ontogenetic changes in feeding behavior in the black bream, Acanthopagrus butcheri (Sparidae, teleostei). Brain Behav Evol 55(4):176–190

    Article  CAS  PubMed  Google Scholar 

  • Shirihai H, Jarrett B (2006) Whales dolphins and other marine mammals of the world. Princeton. Princeton University Press, Princeton, pp 82–84

    Google Scholar 

  • Sivak JG (1980) Accommodation in vertebrates: a contemporary survey. Curr Top Eye Res 3:281–330

    CAS  PubMed  Google Scholar 

  • Spong P, White D (1971) Visual acuity and discrimination learning in the dolphin (Lagenorhynchus obliquidens). Exp Neurol 31:431–436

    Article  CAS  PubMed  Google Scholar 

  • Stone J (1965) A quantitative analysis of the distribution of ganglion cells in the cat’s retina. J Comp Neurol 124:337–352

    Article  CAS  PubMed  Google Scholar 

  • Stone J (1978) The number and distribution of ganglion cells in cat´s retina. J Comp Neurol 180:753–771

    Article  CAS  PubMed  Google Scholar 

  • Stone J (1981) The wholemount handbook. A guide to the preparation and analysis of retinal wholemounts. Maitland, Sydney

    Google Scholar 

  • Stone J, Fukuda Y (1974) Properties of cat retinal ganglion cells: a comparison of W-Cells with X- and Y-cells. J Neurophysiol 37:722–748

    CAS  PubMed  Google Scholar 

  • Stone J, Halasz P (1989) Topography of the retina in the elephant Loxodonta africana. Brain Behav Evol 34:84–95

    Article  CAS  PubMed  Google Scholar 

  • Supin AY, Popov VV, Mass AM (2001) The sensory physiology of aquatic mammals. Kluwer Akademic Publishers, Boston

    Book  Google Scholar 

  • Thewissen JGM (1994) Phylogenetic aspects of cetacean origins: a morphological perspective. J Mammal Evol 2(3):157–184

    Article  Google Scholar 

  • Thewissen JGM, Williams EM (2002) The early radiations of cetacea (mammalia). Evolutionary pattern and developmental correlations. Annu Rev Ecol Syst 33(1):73–90

    Article  Google Scholar 

  • Thewissen JGM, Williams EM, Roe LJ, Hussain ST (2001) Skeletons of terrestrial cetaceans and the relationship of whales to artiodactyls. Nature 413(6853):277–281

    Article  CAS  PubMed  Google Scholar 

  • Thewissen JGM, Cooper LN, Clementz MT, Bajpai S, Tiwari BN (2007) Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature 450(7173):1190–1194

    Article  CAS  PubMed  Google Scholar 

  • Traill TS (1809) Description of a new species of whale, Delphinus melas. In a letter from Thomas Stewart Traill, M. D. to Mr. Nicholson. J Nat Phil Chem Arts 1809:81–83

    Google Scholar 

  • Wässle H, Boycott BB (1991) Functional architecture of the mammalian retina. Physiol Rev 71:447–480

    PubMed  Google Scholar 

  • Wässle H, Peichl L, Boycott BB (1981) Morphology and topography of on- and off-alpha cells in the cat retina. Proc Soc Lond B Biol Sci 212:157–175

    Article  Google Scholar 

  • White D, Cameron N, Spong P, Bradford J (1971) Visual acuity in the killer whale (Orcinus orca). Exp Neurol 32:230–236

    Article  CAS  PubMed  Google Scholar 

  • Williams R, Cavada C, Reinoso-Suárez F (1993) Rapid evolution of the visual system: a cellular assay of the retina and dorsal lateral geniculate nucleus of the spanish wildcat and the domestic cat. J Neurosci 13:208–228

    CAS  PubMed  Google Scholar 

  • Wong ROL, Hughes A (1987) The morphology, number and distribution of a large population of confirmed displaced amacrine cells in the adult cat retina. J Comp Neurol 255:159–177

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Hillmann DJ, Henk WG (2001) Morphology of the eye and surrounding structures of the bowhead whale, Balaena Mysticetus. Mar Mammal Sci 17:729–750

    Article  Google Scholar 

Download references

Acknowledgment

We thank Dra. Dorete Bloch, Department of Zoology, Natural History Museum Faroe Islands, for getting permission to obtain the samples for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Segovia.

Additional information

Communicated by A. Schmidt-Rhaesa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mengual, R., García, M., Segovia, Y. et al. Ocular morphology, topography of ganglion cell distribution and visual resolution of the pilot whale (Globicephala melas). Zoomorphology 134, 339–349 (2015). https://doi.org/10.1007/s00435-015-0258-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-015-0258-7

Keywords

Navigation