Skip to main content
Log in

The mechanosensory lateral line system in two species of wobbegong shark (Orectolobidae)

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

Comparative studies of the mechanosensory lateral line (MLL) have provided valuable insights into the predatory, escape and navigation behaviours of teleost and elasmobranch fishes. Recent work on the MLL in elasmobranchs has focused on canal morphology and pore topography in batoid species, with considerably less detailed examination of the canal system of sharks. In this study, the spatial arrangement of MLL canals and pit organs, and the morphology of the sensory neuromasts, are described for two species of wobbegong shark: the spotted wobbegong Orectolobus maculatus and the ornate wobbegong O. ornatus. Wobbegongs are benthic species that employ an ambush feeding strategy, and it is hypothesised that the MLL will be adapted for both these ecological traits. The spatial distribution of the MLL system in both species is broadly similar to other elasmobranchs, with a dorsal concentration of canals and pit organs that is ideally suited for detecting water flow over the top of the head. This arrangement may facilitate the detection of prey and predators swimming above and in front of the shark. The non-pored canals positioned directly above the mouth may be used as mechanotactile receptors to optimise ‘touch’ sensation when feeding. Wobbegong canal and pit organ neuromast hair cell morphology is typical of other sharks; however, canal neuromast sensory tissue differs from other elasmobranch species in that it is not continuous throughout the canals. The study provides evidence that the MLL system of wobbegong sharks is well adapted for their rather unique feeding mode and benthic lifestyle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baker CF, Montgomery JC (1999a) Lateral line mediated rheotaxis in the Antarctic fish Pagothenia borchgrevinki. Polar Biol 21:305–309

    Article  Google Scholar 

  • Baker CF, Montgomery JC (1999b) The sensory basis of rheotaxis in the blind Mexican cave fish, Astyanax fasciatus. J Comp Physiol [A] 184:519–527

    Article  Google Scholar 

  • Barry MA, Boord RL (1984) The spiracular organ of sharks and skates: anatomical evidence indicating a mechanoreceptive role. Science 226:990–992

    Article  PubMed  CAS  Google Scholar 

  • Barry MA, Hall DH, Bennett MVL (1988) The elasmobranch spiracular organ. I. Morphological studies. J Comp Physiol [A] 163:85–92

    Article  CAS  Google Scholar 

  • Blaxter JHS (1987) Structure and development of the lateral line. Biol Rev Camb Philos Soc 62:471–514

    Article  Google Scholar 

  • Bleckmann H, Tittel G, Blübaum-Gronau E (1989) The lateral line system of surface-feeding fish: anatomy, physiology and behavior. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York, pp 501–526

    Chapter  Google Scholar 

  • Boord RL, Campbell CBG (1977) Structural and functional organization of the lateral line system of sharks. Am Zool 17:431–441

    Google Scholar 

  • Budker P (1938) Les cryptes sensorielles et les denticules cutanés des plagiostomes. Ann Inst Oceanogr 18:207–288

    Google Scholar 

  • Chidlow JA (2003) The biology of wobbegong sharks (Family: Orectolobidae) from south-western Australian waters. Masters Thesis, James Cook University, Townsville

  • Chu YT, Wen MC (1979) Monograph of Fishes of China (No. 2): a study of the lateral-line canals system and that of Lorenzini Ampullae and tubules of Elasmobranchiate Fishes of China. Science and Technology Press, Shanghai

    Google Scholar 

  • Compagno L, Dando M, Fowler S (2005) A field guide to the sharks of the World. Harper Collins Publishers Ltd, London

    Google Scholar 

  • Dijkgraaf S (1962) The functioning and significance of the lateral line organs. Biol Rev Camb Philos Soc 38:51–105

    Google Scholar 

  • Disler NN (1977) Lateral views of the arrangement of the sense organs of sharks. Hakya, Moscow

    Google Scholar 

  • Ewart JC (1892) the lateral sense organs of elasmobranchs. I. The sensory canals of Laemargus. Trans R Soc Edinb 37:59–85

    Google Scholar 

  • Ewart JC, Mitchell HC (1892) On the lateral sense organs of elasmobranchs. II. The sensory canals of the common skate (Raja batis). Trans R Soc Edinb 37:87–105

    Google Scholar 

  • Gardiner JM, Atella J (2007) Sharks need the lateral line to locate odor sources: rheotaxis and eddy chemotaxis. J Exp Biol 210:1925–1934

    Article  PubMed  Google Scholar 

  • Garman S (1888) On the lateral canal system of Selachia and Holocephalia. Bull Mus Comp Zool 17:57–119

    Google Scholar 

  • Hama K, Yamada Y (1977) Fine structure of the ordinary lateral line organ. II. The lateral line canal organ of spotted shark, Mustelus manazo. Cell Tissue Res 176:23–36

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra D, Janssen J (1985) Non-visual feeding behavior of the mottled sculpin, Cottus bairdi, in Lake Michigan. Environ Biol Fishes 12:111–117

    Article  Google Scholar 

  • Huveneers C, Otway NM, Gibbs SE, Harcourt RG (2007) Quantitative diet assessment of wobbegong sharks (genus Orectolobus) in New South Wales, Australia. ICES J Mar Sci 64(6):1272–1281

    Google Scholar 

  • Jarvik E (1980) Basic structure and evolution of vertebrates, Vols. 1 and 2. Academic press, New York

    Google Scholar 

  • Johnson SE (1917) Structure and development of the sense organs of the lateral canal system of selachians (Mustelus canis and Squalus acanthias). J Comp Neurol 28:1–74

    Article  Google Scholar 

  • Jordan LK (2008) Comparative morphology of stingray lateral line canal and electrosensory systems. J Morphol 269:1325–1339

    Article  PubMed  Google Scholar 

  • Jordan LK, Kajiura SM, Gordon MS (2009) Functional consequences of structural differences in stingray sensory systems. Part I: mechanosensory lateral line canals. J Exp Biol 212:3037–3043

    Article  PubMed  Google Scholar 

  • Last PR, Stevens JD (2009) Sharks and rays of Australia. CSIRO, Australia

    Google Scholar 

  • Lowenstein O (1974) Comparative morphology and physiology. In: Kornhuber HH (ed) Handbook of sensory physiology VI/I. Vestibular system: basic mechanisms. Springer, Berlin, pp 75–120

    Chapter  Google Scholar 

  • Lu Z, Popper AN (1998) Morphological polarizations of sensory hair cells in the three otolithic organs of a teleost fish: fluorescent imaging of ciliary bundles. Hear Res 126:47–57

    Article  PubMed  CAS  Google Scholar 

  • Maruska KP (2001) Morphology of the mechanosensory lateral line system in elasmobranch fishes; ecological and behavioral considerations. Environ Biol Fishes 60:47–75

    Article  Google Scholar 

  • Maruska KP, Tricas TC (1998) Morphology of the mechanosensory lateral line system in the Atlantic stingray, Dasyatis sabina: the mechanotactile hypothesis. J Morphol 238:1–22

    Article  Google Scholar 

  • Maruska KP, Tricas TC (2004) Test of the mechanotactile hypothesis: neuromast morphology and response dynamics of mechanosensory lateral line primary afferents in the stingray. J Exp Biol 207:3463–3476

    Article  PubMed  Google Scholar 

  • Marzullo TA, Wueringer BE, Squire Jnr L, Collin SP (2011) Description of the mechanoreceptive lateral line and electroreceptive ampullary systems in the freshwater whipray, Himantura dalyensis. Mar Freshw Res 62:771–779

    Article  CAS  Google Scholar 

  • Montgomery J, Skipworth E (1997) Detection of weak water jets by the short-tailed stingray Dasyatis brevicaudata (Pisces: Dasyatidae). Copeia 1997:881–883

    Article  Google Scholar 

  • Montgomery JC, Baker CF, Carton AG (1997) The lateral line can mediate rheotaxis in fish. Nature 389:960–963

    Article  CAS  Google Scholar 

  • Münz H (1979) Morphology and innervation of the lateral line system in Sarotherodon niloticus (L.) (Cichlidae, Teleostei). Zoomorphol 93:73–86

    Article  Google Scholar 

  • Nickel E, Fuchs S (1974) Organization and ultrastructure of mechanoreceptors (Savi vesicles) in the elasmobranch Torpedo. J Neurocytol 3:161–177

    Article  Google Scholar 

  • Northcutt RG (1992) Distribution and innervation of lateral line organs in the axolotl. J Comp Neurol 325:95–123

    Article  PubMed  CAS  Google Scholar 

  • Northcutt RG, Holmes PH, Albert JS (2000) Distribution and innervation of lateral line organs in the channel catfish. J Comp Neurol 421:570–592

    Article  PubMed  CAS  Google Scholar 

  • Partridge BL, Pitcher TJ (1980) The sensory basis of fish schools: relative roles of lateral line and vision. J Comp Physiol [A] 135:315–325

    Article  Google Scholar 

  • Peach MB (2001) The dorso-lateral pit organs of the Port Jackson shark contribute sensory information for rheotaxis. J Fish Biol 59:696–704

    Article  Google Scholar 

  • Peach MB (2003a) The behavioural role of pit organs in the epaulette shark. J Fish Biol 62:793–802

    Article  Google Scholar 

  • Peach MB (2003b) Inter- and intraspecific variation in the distribution and number of pit organs (free neuromasts) of sharks and rays. J Morphol 256:89–102

    Article  PubMed  Google Scholar 

  • Peach MB, Marshall NJ (2009) The comparative morphology of pit organs in elasmobranchs. J Morphol 270:688–701

    Article  PubMed  CAS  Google Scholar 

  • Peach MB, Rouse GW (2000) The morphology of the pit organs and lateral line canal neuromasts of Mustelus antarcticus (Chondrichthyes: Triakidae). J Mar Biol Assoc U K 80:155–162

    Article  Google Scholar 

  • Platt C, Popper AN (1981) Fine structure and function of the ear. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer, New York, pp 3–36

    Chapter  Google Scholar 

  • Puzdrowski RL, Leonard RB (1993) The octavolateral systems in the stingray, Dasyatis sabina. I. Primary projections of the octaval and lateral line nerves. J Comp Neurol 332:21–37

    Article  PubMed  CAS  Google Scholar 

  • Roberts BL, Ryan KP (1971) The fine structure of the lateral-line sense organs of dogfish. Proc R Soc Lond B Biol Sci 179:157–169

    Article  Google Scholar 

  • Satou M, Takeuchi HA, Nishii J, Tanabe M, Kitamura S, Okumto N, Iwata M (1994) Behavioral and electrophysiological evidences that the lateral line is involved in the intersexual vibrational communication of the himé salmon (landlocked red salmon, Oncorhynchus nerka). J Comp Physiol [A] 174:539–549

    Google Scholar 

  • Savi P (1844) Etudes anatomiques sur le system nerveux et sur l’organe electrique de la Torpille. In: Matteucci C (ed) Traite des Phenomenes Electrophysiologiques des Animaux. Chez L. Mechelsen, Paris, pp 272–348

  • Shibuya A, Zuanon J, de Araújo MLG, Tanaka S (2010) Morphology of lateral line canals in Neotropical freshwater stingrays (Chondrichthyes: Potamotrygonidae) from Negro River, Brazilian Amazon. Neotrop Ichthyol 8(4):867–876

    Article  Google Scholar 

  • Song JK, Northcutt RG (1991) Morphology, distribution and innervation of the lateral-line receptors of the Florida gar, Lepisosteus platyrhincus. Brain Behav Evol 37:10–37

    Article  PubMed  CAS  Google Scholar 

  • Tester AL, Kendall JI (1967) Innervation of free and canal neuromasts in the sharks Carcharhinus menisorrah and Sphyrna lewini. In: Cahn PH (ed) Lateral line detectors. Indiana University Press, Bloomington, pp 53–69

    Google Scholar 

  • Tester AL, Kendall JI (1969) Morphology of the lateralis canal system in the shark genus Carcharhinus. Pac Sci 23:1–16

    Google Scholar 

  • Tester AL, Nelson GJ (1967) Free neuromasts (pit organs) in sharks. In: Gilbert PW, Mathewson RF, Rall DP (eds) Sharks, skates, and rays. The John Hopkins Press, Baltimore, pp 503–531

    Google Scholar 

  • Tester AL, Kendall JI, Milisen WB (1972) Morphology of the ear of the shark genus Carcharhinus, with particular reference to the macula neglecta. Pac Sci 26:264–274

    Google Scholar 

  • Theiss SM, Collin SP, Hart NS (2011) Morphology and distribution of the ampullary electroreceptors in wobbegong sharks: implications for feeding behaviour. Mar Biol 158(4):723–735

    Article  Google Scholar 

  • Wueringer BE, Tibbetts IR (2008) Comparison of the lateral line and ampullary systems of two species of shovelnose ray. Rev Fish Biol Fish 18(1):47–64

    Article  Google Scholar 

  • Wueringer BE, Peverell SC, Seymour J, Squire L Jr, Collin SP (2011) Sensory systems in sawfishes. 2. The lateral line. Brain Behav Evol 78:150–161

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank John Page and Dr Scott Cutmore for help with animal collection, and Dr Meredith Peach for providing advice on pit organ fixation methods. Funding for this project was supplied by a University of Queensland (UQ) International Research Award and UQ International Living Allowance Scholarship to SMT, Australian Research Council (ARC) Discovery and Linkage Grants to SPC, and an ARC Discovery Grant/Queen Elizabeth II Fellowship (DP0558681) to NSH. Additional funding to SMT was provided by a National and International Research Alliances Program awarded to Associate Professor Ron Johnstone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan M. Theiss.

Additional information

Communicated by A. Schmidt-Rhaesa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theiss, S.M., Collin, S.P. & Hart, N.S. The mechanosensory lateral line system in two species of wobbegong shark (Orectolobidae). Zoomorphology 131, 339–348 (2012). https://doi.org/10.1007/s00435-012-0161-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-012-0161-4

Keywords

Navigation