Skip to main content

Advertisement

Log in

Comparative analysis of co-occurring mutations of specific tumor suppressor genes in lung adenocarcinoma between Asian and Caucasian populations

  • Original Article – Clinical Oncology
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Introduction

Mutated tumor suppressor genes (TSG) such as TP53, STK11, and MGA are widely-reported. We hypothesized the presence of single mutation or co-occurring mutations in these specific genes may represent a significant therapeutic target for lung adenocarcinoma.

Methods

We sequenced lung adenocarcinoma samples from 677 East-Asian patients, combined them with those from cBioPortal public database (including TCGA) and performed a comparative analysis between Asian and Caucasian populations.

Results

East-Asian lung adenocarcinomas presented distinct driver-mutational distribution compared to that of Caucasians (79% vs 56%, p < 0.001). Similar results were observed in TSG mutations of TP53 (35% vs 46%, p = 0.150), STK11 (4% vs 17%, p = 0.006) and MGA (10% vs 4%, p = 0.166). Compared with none-mutational cases, the patients harboring TSG mutations are more likely to be male (p = 0.009), smokers (p < 0.001), and more advanced disease (p = 0.004). In addition, the TSG-mutated tumors had poorer differentiation (p < 0.001), and more likely to be solid or micropapillary-predominant adenocarcinomas (p < 0.001). Survival analysis showed that both overall survival (OS, p < 0.001) and post-recurrence survival (PRS, p < 0.001) became worse with the accumulation of TSG mutations. However, the prognostic variety was not found in Caucasian patients. Moreover, multivariate analysis proved the accumulation of TSG mutations independently predicts both unfavorable OS (HR = 0.435, 95% CI 0.245–0.774, p = 0.005) and PRS (HR = 0.491, 95% CI 0.269–0.894, p = 0.020) in East-Asian patients, adjusting all other survival-associated factors.

Conclusions

Co-occurring mutations of specific TSGs define unfavorable subgroups of lung adenocarcinoma, implying that the tumor promotion mechanisms contribute to the heterogeneity in tumor evolution. However, the Caucasian population did not show the same results, providing insights into the molecular basis underlying the striking racial disparities of this disease and evidence for different gene-panel designs for different population in the purpose of targeted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bergethon K, Shaw AT, Ou SH et al (2012) ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol 30:863–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell JD, Alexandrov A, Kim J et al (2016) Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat Genet 48:607–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cancer Genome Atlas Research N (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489:519–525

    Article  CAS  Google Scholar 

  • Cancer Genome Atlas Research N (2014) Comprehensive molecular profiling of lung adenocarcinoma. Nature 511:543–550

    Article  CAS  Google Scholar 

  • Dang CV (2012) MYC on the path to cancer. Cell 149:22–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding L, Getz G, Wheeler DA et al (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455:1069–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drilon A, Wang L, Hasanovic A et al (2013) Response to Cabozantinib in patients with RET fusion-positive lung adenocarcinomas. Cancer Discov 3:630–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Facchinetti F, Bluthgen MV, Tergemina-Clain G et al (2017) LKB1/STK11 mutations in non-small cell lung cancer patients: descriptive analysis and prognostic value. Lung Cancer 112:62–68

    Article  PubMed  Google Scholar 

  • Gao Y, Xiao Q, Ma H et al (2010) LKB1 inhibits lung cancer progression through lysyl oxidase and extracellular matrix remodeling. Proc Natl Acad Sci USA 107:18892–18897

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Ge G, Ji H (2011) LKB1 in lung cancerigenesis: a serine/threonine kinase as tumor suppressor. Protein Cell 2:99–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbons DL, Byers LA, Kurie JM (2014) Smoking, p53 mutation, and lung cancer. Mol Cancer Res 12:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurlin PJ, Steingrimsson E, Copeland NG et al (1999) Mga, a dual-specificity transcription factor that interacts with Max and contains a T-domain DNA-binding motif. EMBO J 18:7019–7028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imielinski M, Berger AH, Hammerman PS et al (2012) Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150:1107–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji H, Ramsey MR, Hayes DN et al (2007) LKB1 modulates lung cancer differentiation and metastasis. Nature 448:807–810

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Gu ZH, Yan ZX et al (2015) Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. Nat Genet 47:1061–1066

    Article  CAS  PubMed  Google Scholar 

  • Jo YS, Kim MS, Yoo NJ et al (2016) Somatic mutation of a candidate tumour suppressor MGA gene and its mutational heterogeneity in colorectal cancers. Pathology 48:525–527

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi T, Koh Y, Ando M et al (2016) Prospective analysis of oncogenic driver mutations and environmental factors: Japan Molecular Epidemiology for Lung Cancer Study. J Clin Oncol 34:2247–2257

    Article  CAS  PubMed  Google Scholar 

  • Kleppe M, Levine RL (2014) Tumor heterogeneity confounds and illuminates: assessing the implications. Nat Med 20:342–344

    Article  CAS  PubMed  Google Scholar 

  • Kwak EL, Bang YJ, Camidge DR et al (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363:1693–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto S, Iwakawa R, Takahashi K et al (2007) Prevalence and specificity of LKB1 genetic alterations in lung cancers. Oncogene 26:5911–5918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsudomi T, Morita S, Yatabe Y et al (2010) Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol 11:121–128

    Article  CAS  PubMed  Google Scholar 

  • O’Neill GM, Seo S, Serebriiskii IG et al (2007) A new central scaffold for metastasis: parsing HEF1/Cas-L/NEDD9. Cancer Res 67:8975–8979

    Article  Google Scholar 

  • Pan Y, Wang R, Ye T et al (2014a) Comprehensive analysis of oncogenic mutations in lung squamous cell carcinoma with minor glandular component. Chest 145:473–479

    Article  PubMed  Google Scholar 

  • Pan Y, Zhang Y, Li Y et al (2014b) ALK, ROS1 and RET fusions in 1139 lung adenocarcinomas: a comprehensive study of common and fusion pattern-specific clinicopathologic, histologic and cytologic features. Lung Cancer 84:121–126

    Article  PubMed  Google Scholar 

  • Rizvi NA, Hellmann MD, Snyder A et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero OA, Torres-Diz M, Pros E et al (2014) MAX inactivation in small cell lung cancer disrupts MYC-SWI/SNF programs and is synthetic lethal with BRG1. Cancer Discov 4:292–303

    Article  CAS  PubMed  Google Scholar 

  • Rosell R, Carcereny E, Gervais R et al (2012) Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 13:239–246

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Cespedes M, Parrella P, Esteller M et al (2002) Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res 62:3659–3662

    CAS  PubMed  Google Scholar 

  • Schabath MB, Welsh EA, Fulp WJ et al (2016) Differential association of STK11 and TP53 with KRAS mutation-associated gene expression, proliferation and immune surveillance in lung adenocarcinoma. Oncogene 35:3209–3216

    Article  CAS  PubMed  Google Scholar 

  • Sequist LV, Yang JC, Yamamoto N et al (2013) Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol 31:3327–3334

    Article  CAS  PubMed  Google Scholar 

  • Shackelford DB, Shaw RJ (2009) The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 9:563–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah U, Sharpless NE, Hayes DN (2008) LKB1 and lung cancer: more than the usual suspects. Cancer Res 68:3562–3565

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ (2004) Principles of tumor suppression. Cell 116:235–246

    Article  CAS  PubMed  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2017) Cancer Statistics, 2017. CA Cancer J Clin 67:7–30

    Article  PubMed  Google Scholar 

  • Stephens P, Hunter C, Bignell G et al (2004) Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature 431:525–526

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Ren Y, Fang Z et al (2010) Lung adenocarcinoma from East Asian never-smokers is a disease largely defined by targetable oncogenic mutant kinases. J Clin Oncol 28:4616–4620

    Article  PubMed  PubMed Central  Google Scholar 

  • Travis WD (2015) WHO classification of tumours of the lung, pleura, thymus and heart. International Agency for Research on Cancer. http://apps.who.int/bookorders/anglais/detart1.jsp?codlan=1&codcol=70&codcch=4007

  • Wang R, Hu H, Pan Y et al (2012a) RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J Clin Oncol 30:4352–4359

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Pan Y, Li C et al (2012b) The use of quantitative real-time reverse transcriptase PCR for 5′ and 3′ portions of ALK transcripts to detect ALK rearrangements in lung cancers. Clin Cancer Res 18:4725–4732

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Wang L, Li Y et al (2014) FGFR1/3 tyrosine kinase fusions define a unique molecular subtype of non-small cell lung cancer. Clin Cancer Res 20:4107–4114

    Article  CAS  PubMed  Google Scholar 

  • Weir BA, Woo MS, Getz G et al (2007) Characterizing the cancer genome in lung adenocarcinoma. Nature 450:893–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Grants 81330056; 81172218; 81572253 from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiquan Chen.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 KB)

Supplementary material 2 (TIFF 21172 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ma, Y., Li, Y. et al. Comparative analysis of co-occurring mutations of specific tumor suppressor genes in lung adenocarcinoma between Asian and Caucasian populations. J Cancer Res Clin Oncol 145, 747–757 (2019). https://doi.org/10.1007/s00432-018-02828-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-018-02828-5

Keywords

Navigation