Skip to main content

Advertisement

Log in

Endothelin-1 (ET-1) induces resistance to bortezomib in human multiple myeloma cells via a pathway involving the ETB receptor and upregulation of proteasomal activity

  • Original Article – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Bortezomib (BTZ) is used for the treatment of multiple myeloma (MM). However, a significant proportion of patients may be refractory to the drug. This study aimed to investigate whether the endothelin (ET-1) axis may act as an escape mechanism to treatment with bortezomib in MM cells.

Methods

NCI-H929 and RPMI-8226 (human MM cell lines) were cultured with or without ET-1, BTZ, and inhibitors of the endothelin receptors. ET-1 levels were determined by ELISA, while the protein levels of its receptors and of the PI3K and MAPK pathways’ components by western blot. Effects of ET-1 on cell proliferation were studied by MTT and on the ubiquitin proteasome pathway by assessing the chymotryptic activity of the 20S proteasome in cell lysates.

Results

Endothelin receptors A and B (ETAR and ETBR, respectively) were found to be expressed in both cell lines, with the RPMI-8226 cells that are considered resistant to BTZ, expressing higher levels of ETBR and in addition secreting ET-1. Treatment of the NCI-H929 cells with ET-1 increased proliferation, while co-incubation of these cells with ET-1 and BTZ decreased BTZ efficacy with concomitant upregulation of 20S proteasomal activity. Si-RNA silencing or chemical blockade of ETBR abrogated the protective effects of ET-1. Finally, data suggest that the predominant signaling pathway involved in ET-1/ETBR-induced BTZ resistance in MM cells may be the MAPK pathway.

Conclusion

Our data suggest a possible role of the ET-1/ETBR axis in regulating the sensitivity of MM cells to BTZ. Thus, combining bortezomib with strategies to target the ET-1 axis could prove to be a novel promising therapeutic approach in MM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Akt:

Protein kinase B

BTZ:

Bortezomib

DMSO:

Dimethyl sulfoxide

EGF:

Epidermal growth factor

Erk1/2 (p44/42):

Extracellular signal-regulated kinase

ET-1:

Endothelin-1

ET-2:

Endothelin-2

ET-3:

Endothelin-3

ETAR:

Endothelin receptor A

ETBR:

Endothelin receptor B

FBS:

Foetal bovine serum

GPCR:

G-protein coupled receptor

HMCLs:

Human multiple myeloma cell lines

HY:

Hyperdiploid class

IGF-1:

Insulin-like growth factor 1

LB:

Low bone disease class

MAPK:

Mitogen-activated protein kinase

MM:

Multiple myeloma

MTT:

3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide

NEP/CD10:

Neuropeptidase

NF-kB:

Nuclear factor kB

NP’s:

Neuropeptides

P70S6K:

p70S6 Kinase

PI:

Proteasome inhibitor

PI3-K:

Phosphoinositide 3-kinase

PS-341:

Bortezomib

UPS:

Ubiquitin proteasome system

References

  • Adachi M, Yang YY, Furuichi Y, Miyamoto C (1991) Cloning and characterization of cDNA encoding human A-type endothelin receptor. Biochem Biophys Res Commun 180:1265–1272

    Article  CAS  PubMed  Google Scholar 

  • Adams J (2003) The proteasome: structure, function and role in the cell. Cancer Treat Rev 29:3–9

    Article  CAS  PubMed  Google Scholar 

  • Ali H, Loizidou M, Dashwood M, Savage F, Sheard C, Taylor I (2000) Stimulation of colorectal cancer cell line growth by ET-1 and its inhibition by ET(A) antagonists. Gut 47:685–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anguelova E, Beuvon F, Leonard N, Chaverot N, Varlet P, Couraud PO et al (2005) Functional endothelin ETB receptors are selectively expressed in human oligodendrogliomas. Brain Res Mol Brain Res 137:77–88

    Article  CAS  PubMed  Google Scholar 

  • Bagnato A (2012) The endothelin axis as therapeutic target in human malignancies: present and future. Curr Pharm Des 18:2720–2733

    Article  CAS  PubMed  Google Scholar 

  • Bagnato A, Natali PG (2004a) Endothelin receptors as novel targets in tumor therapy. J Transl Med 2:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Bagnato A, Natali PG (2004b) Targeting endothelin axis in cancer. Cancer Treat Res 119:293–314

    Article  CAS  PubMed  Google Scholar 

  • Bagnato A, Rosano LE (2008) The endothelin axis in cancer. Int J Biochem Cell Biol 40:1443–1451

    Article  CAS  PubMed  Google Scholar 

  • Bagnato A, Tecce R, Moretti C et al (1995) Autocrine actions of endothelin-1 as a growth factor in human ovarian carcinoma cells. Clin Cancer Res 1:1059–1066

    CAS  PubMed  Google Scholar 

  • Bagnato A, Tecce R, Di Castro V, Catt KJ (1997) Activation of mitogenic signaling by endothelin-1 in ovarian carcinoma cells. Cancer Res 57:1306–1311

    CAS  PubMed  Google Scholar 

  • Bagnato A, Salani D, Di Castro V, Wu-Wong JR, Tecce R, Nicotra A, Venuti A, Natali PG (1999) Expression of endothelin-1 and endothelin A receptor in ovarian carcinoma: evidence for an autocrine role in tumor growth. Cancer Res 59:720–727

    CAS  PubMed  Google Scholar 

  • Bagnato A, Rosano L, Spinella F, Di Castro V, Tecce R et al (2004) Endothelin B receptor blockade inhibits dynamics of cell interactions and communications in melanoma cell progression. Cancer Res 64:1436–1443

    Article  CAS  PubMed  Google Scholar 

  • Bagnato A, Loizidou M, Pflug BR, Curwen J, Growcott J (2011) Role of the endothelin axis and its antagonists in the treatment of cancer. Br J Pharmacol 163:220–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balsas P, Lopez-Royuela N, Galan-Malo P, Anel A, Marzo I, Naval J (2009) Cooperation between Apo2L/TRAIL and bortezomib in multiple myeloma apoptosis. Biochem Pharmacol 77:804–812

    Article  CAS  PubMed  Google Scholar 

  • Bednar DL, Stein RB, Garsky VM, Williams DL (1991) The bovine endothelin receptor has an apparent molecular weight of 43,000. Biochem Biophys Acta 1092:226–232

    Article  CAS  PubMed  Google Scholar 

  • Berger Y, Bernasconni CC, Juillerat-Jeanneret L (2006) Targeting the endothelin axis in human melanoma: combination of endothelin receptor antagonism and alkylating agents. Exp Biol Med 231:1111–1119

    CAS  Google Scholar 

  • Bergsagel PL, Kuehl WM (2005) Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol 23:6333–6338

    Article  CAS  PubMed  Google Scholar 

  • Bianchi G, Oliva L, Cascio P, Pengo N, Fontana F et al (2009) The proteasome load versus capacity balance determines apoptotic sensitivity of multiple myeloma cells to proteasome inhibition. Blood 113:3040–3049

    Article  CAS  PubMed  Google Scholar 

  • Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E et al (2000) Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406:536–540

    Article  CAS  PubMed  Google Scholar 

  • Codony-Servat J, Tapia MA, Bosch M et al (2006) Differential and molecular effects of bortezomib, a proteasome inhibitor, in human breast cancer cells. Mol Cancer Ther 5:665–675

    Article  CAS  PubMed  Google Scholar 

  • Conner TM, Doan QD, Walters IB, LeBlanc AL, Beveridge RA (2008) An observational retrospective analysis of retreatment with bortezomib for multiple myeloma. Clin Lymphoma Myeloma 8:140–145

    Article  CAS  PubMed  Google Scholar 

  • Cyr C, Huebner K, Druck T, Kris R (1991) Cloning and chromosomal localization of a human endothelin ETA receptor. Biochem Biophys Res Commun 181:184–190

    Article  CAS  PubMed  Google Scholar 

  • De Giorgio L, Tazzari PL, Barbara G et al (1998) Detection of substance P immunoreactivity in human peripheral leukocytes. J Neuroimmunol 82:175–181

    Article  PubMed  Google Scholar 

  • Del Bufalo D, Di Castro V, Biroccio A, Varmi M, Salani D, Rosano L, Trisciuoglio D, Spinella F, Bagnato A (2002) Endothelin-1 protects ovarian carcinoma cells against paclitaxel-induced apoptosis: requirement for Akt activation. Mol Pharmacol 61:524–532

    Article  PubMed  Google Scholar 

  • Demunter A, De Wolf-Peeters C, Degreef H, Stas M, van den Oord JJ (2001) Expression of the endothelin B receptor in pigment cell lesions of the skin. Evidence for its role as tumor progression marker in malignant melanoma. Virchows Arch 438:485–491

    Article  CAS  PubMed  Google Scholar 

  • Descamps G, Gomez-Bougie P, Venot C, Moreau P, Amiot M (2009) A humanized anti-IGF-1R monoclonal antibody (AVE1642) enhances bortezomib-induced apoptosis in myeloma cells lacking CD45. BJC 100:366–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW (2008) Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev 22:239–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrenreich H, Anderson RW, Fox CH, Rieckmann P, Hoffman GS et al (1990) Endothelins, peptides with potent vasoactive properties are produced by human macrophages. J Exp Med 172:1741–1748

    Article  CAS  PubMed  Google Scholar 

  • Elshourbagy NA, Adamou JE, Gagnon AW, Wu HL, Pullen M, Nambi P (1996) Molecular characterization of a novel human endothelin receptor splice variant. J Biol Chem 271:25300–25307

    Article  CAS  PubMed  Google Scholar 

  • Ferone D, Hafland LJ, Colao A, Lamberts SWJ, van Hagen PM (2001) Neuroendocrine aspects of immunolymphoproliferative diseases. Ann Oncol 12:125–130

    Article  Google Scholar 

  • Fingar DC, Salama S, Tsou C, Harlow E, Blenis J (2002) Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Gene Dev 16:1472–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher RI, Bernstein SH, Kahl BS et al (2006) Multicenter phase II study of bortezomib in patients with relapsed or refractory mantle cell lymphoma. J Clin Oncol 24:4867–4874

    Article  PubMed  Google Scholar 

  • Freedman NJ, Ament AS, Oppermann M, Stoffel RH, Exum ST, Lefkowitz RJ (1997) Phosphorylation and desensitization of human endothelin A and B receptors: evidence for G protein-coupled receptor kinase specificity. J Biol Chem 272:17734–17743

    Article  CAS  PubMed  Google Scholar 

  • Ge NK, Rudikoff S (2000) Insulin-like growth factor 1 is a dual effector of multiple myeloma cell growth. Blood 96:2856–2861

    CAS  PubMed  Google Scholar 

  • Goldberg AL, Cascio P, Saric T, Rock KL (2002) The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Mol Immunol 39:147–164

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Bougie P, Wuilleme-Tpumi S, Menoret E, Trichet V, Robillard N, Philippe M, Bataille R, Amiot M (2007) Noxa up-regulation and Mcl-1 cleavage are associated to apoptosis induction by bortezomib in multiple myeloma. Cancer Res 67:5418–5424

    Article  CAS  PubMed  Google Scholar 

  • Grant K, Knowles J, Dawas K, Burnstock G, Taylor I, Loizidou M (2007) Mechanisms of endothelin-1 stimulated proliferation in colorectal cancer cell lines. Br J Surg 94:106–112

    Article  CAS  PubMed  Google Scholar 

  • He S, Dibas A, Yorio T, Prasanna G (2007) Parallel signaling pathways in endothelin-1-induced proliferation of U373MG astrocytoma cells. Exp Biol Med 232:370–384

    CAS  Google Scholar 

  • Helleman J, Smid M, Jansen MP, van der Burg ME, Berns EM (2010) Pathway analysis of gene lists associated with platinum-based chemotherapy resistance in ovarian cancer: the big picture. Gynecol Oncol 117:170–176

    Article  CAS  PubMed  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  PubMed  Google Scholar 

  • Hideshima T, Richardson PG, Anderson KC (2011) Mechanisms of action of proteasome inhibitors and deacetylase inhibitors and the biological basis of synergy in multiple myeloma. Mol Cancer Ther 10:2034–2042

    Article  CAS  PubMed  Google Scholar 

  • Ihara M, Ishikawa K, Fukuroda T, Saeki T, Funabashi K, Fukami T, Suda H, Yano M (1992) In vitro biological profile of a highly potent novel endothelin (ET) antagonist BQ-123 selective for the ETA receptor. J Cardiovasc Pharmacol 20(Suppl 12):S11–S14

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa K, Ihara M, Noguchi K, Mase T, Mino N, Saeki T, Fukuroda T, Fukami T, Ozaki S, Nagase T et al (1994) Biochemical and pharmacological profile of a potent and selective endothelin B-receptor antagonist, BQ-788. Proc Natl Acad Sci USA 91:4892–4896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kane RC, Bross PF, Farrell AT, Pazdur R (2003) Velcade: US FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist 8:508–513

    Article  PubMed  Google Scholar 

  • Khun DJ, Berkova Z, Jones RJ, Woessner R, Bjorklund CC, Ma W, Davis RA et al (2012) Targeting the insulin-like growth factor-1 receptor to overcome bortezomib resistance in pre-clinical models of multiple myeloma. Blood 120:3260–3270

    Article  CAS  Google Scholar 

  • Kogner P, Ericsson A, Barbany G et al (1992) Neuropeptide Y (NPY) synthesis in lymphoblasts and increased plasma NPY in pediatric B-cell precursor leukaemia. Blood 80:1324–1329

    CAS  PubMed  Google Scholar 

  • Kojima K, Nihei Z (1995) Expression of endothelin-1 immunohistochemistry in breast cancer. Surg Onc 4:309–315

    Article  CAS  Google Scholar 

  • Kondo M, Ishida N, Kobayashi M, Mitsui Y (1992) Secretion of endothelin-1 in human endothelial cell line but not in B cell line by transfection of preproendothelin-1 cDNA. Biochim Biophys Acta 1134:242–246

    Article  CAS  PubMed  Google Scholar 

  • Kondoh M, Miyazakli H, Watanabe H, Shibata T, Yanagisawa M, Masaki T, Murakami K (1990) Isolation of anti-endothelin receptor monoclonal antibodies for use in receptor characterization. Biochem Biophys Res Commun 172:503–510

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Rajkumar SV (2008) Many facets of bortezomib resistance/susceptibility. Blood 112:2177–2178

    Article  CAS  PubMed  Google Scholar 

  • Kumatori A, Tanaka K, Inamura N, Sone S, Ogura T, Matsumoto T, Tachikawa T, Shin S, Ichihara A (1990) Abnormally high expression of proteasomes in human leukemic cells. Proc Natl Acad Sci USA 87:7071–7075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurokawa K, Yamada H, Ochi J (1997) Topographical distribution of neurons containing endothelin type A receptor in the rat brain. J Comp Neurol 389:348–360

    Article  CAS  PubMed  Google Scholar 

  • Kusuhara M, Yamaguchi K, Nagasaki K, Hayashi C, Suzaki A, Hori S, Handa S, Nakamura Y, Abe K (1990) Production of endothelin in human cancer cell lines. Clin Cancer Res 50:3257–3261

    CAS  Google Scholar 

  • Lahav R (2005) Endothelin receptor B is required for the expansion of melanocyte precursors and malignant melanoma. Int J Dev Biol 49:173–180

    Article  CAS  PubMed  Google Scholar 

  • Maffei R, Bulgarelli J, Fiorcari S, Martinelli S, Castelli I et al (2014) Endothelin-1 promotes survival and chemoresistance in Chronic Lymphocytic leukemia B Cells through ETA receptor. PLoS ONE 9:e98818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Masuda Y, Miyazaki H, Kondoh M, Watanabe H, Yanagisawa M, Masaki T, Murakami K (1989) Two different forms of endothelin receptors in rat lung. FEBS Lett 257:208–210

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto Y, Yoshimasa T, Arai H, Takaya K, Ogawa Y, Itoh H, Nakao K (1996) Alternative RNA splicing of the human endothelin-A receptor generates multiple transcripts. Biochem J 313:795–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreau P, Richardson PG, Cavo M, Orlowski RZ, San Miguel JF, Palumbo A, Harousseau J-L (2012) Proteasome inhibitors in multiple myeloma: 10 years later. Blood 120:945–959

    Article  CAS  Google Scholar 

  • Nakamuta M, Ohashi M, Tabata S, Tanabe Y, Goto K, Naruse M et al (1993) High plasma concentrations of endothelin-like immunoreactivities in patients with hepatocellular carcinoma. Am J Gastroenterol 88:248–252

    CAS  PubMed  Google Scholar 

  • Nelson JB (2009) Endothelin receptors as therapeutic targets in castration-resistant prostate cancer. Eur Urol Suppl 8:20–28

    Article  CAS  Google Scholar 

  • Nelson B, Chan-Tack K, Hedican P, Magnuson R, Opgenorth T, Bova G et al (1996) Endothelin-1 production and decreased endothelin B receptor expression in advanced prostate cancer. Cancer Res 56:663–668

    CAS  PubMed  Google Scholar 

  • Nelson J, Bagnato A, Battistini B, Nisen P (2003) The endothelin axis: emerging role in cancer. Nat Rev Cancer 3:110–116

    Article  CAS  PubMed  Google Scholar 

  • Nelson JB, Udan MS, Guruli G, Pflug BR (2005) Endothelin-1 inhibits apoptosis in prostate cancer. Neoplasia 7:631–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson D, Wackenfors A, Gustafsson L, Ugander M, Ingemansson R, Edvinson L et al (2008) PKC and MAPK signaling pathways regulate vascular endothelin receptor expression. Eur J Pharmacol 580:190–200

    Article  CAS  PubMed  Google Scholar 

  • Oerlemans R, Franke NE, Assaraf YG et al (2008) Molecular basis of bortezomib resistance: proteasome subunit beta5 (PSMB5) gene mutation and overexpression of PSMB5 protein. Blood 112:2489–2499

    Article  CAS  PubMed  Google Scholar 

  • Osman I, Dai J, Mikhail M et al (2006) Loss of neutral endopeptidase and activation of protein kinase B (Akt) is associated with prostate cancer progression. Cancer 107:2628–2636

    Article  CAS  PubMed  Google Scholar 

  • Papandreou CN, Usmani B, Geng Y et al (1998) Neutral endopeptidase 24.11 loss in metastatic human prostate cancer contributes to androgen-independent progression. Nat Med 4(1):50–57

    Article  CAS  PubMed  Google Scholar 

  • Patrikidou A, Vlachostergios PJ, Voutsadakis IA, Hatzidaki E, Valeri R-M, Destouni C, Apostolou E, Daliani D, Papandreou CN (2011) Inverse baseline expression pattern of the NEP/neuropeptides and NFkB/proteasome pathways in androgen-dependent and androgen-independent prostate cancer cells. Cancer Cell Int 11:1–13

    Article  CAS  Google Scholar 

  • Patrikidou A, Vlachostergios PJ, Voutsadakis JA, Hatzidaki E, Valeri RM, Destouni C, Apostolou E, Papandreou CN (2012) Neuropeptide inducible upregulation of proteasome activity precedes nuclear factor kappa B activation in androgen independent prostate cancer cells. Cancer Cell Int 12:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiang YW, Kopantzev E, Rudikoff S (2002) Insulin-like growth factor 1 signalling in multiple myeloma: downstream elements, functional correlates and pathway cross-talk. Blood 99:4138–4146

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar SV (2009) Multiple myeloma. Curr Probl Cancer 33:7–64

    Article  PubMed  Google Scholar 

  • Rajkumar SV, Richardson PG, Hideshima T, Anderson KC (2005) Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol 23:630–639

    Article  CAS  PubMed  Google Scholar 

  • Reddy N, Czuczman MS (2010) Enhancing activity and overcoming chemoresistance in hematologic malignancies with bortezomib: preclinical mechanistic studies. Ann Oncol 21:1756–1764

    Article  CAS  PubMed  Google Scholar 

  • Richardson PG, Barlogie B, Berenson J et al (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348:2609–2617

    Article  CAS  PubMed  Google Scholar 

  • Richardson PG, Sonneveld P, Schuster MW et al (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352:2487–2498

    Article  CAS  PubMed  Google Scholar 

  • Rosano L, Spinella F, Bagnato A (2013) Endothelin-1 in cancer: biological implication and therapeutic opportunities. Nat Rev Cancer 13:637–651

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto A, Yanagisawa M, Sakurai T, Takuwa Y, Yanagisawa H, Masaki T (1991) Cloning and functional expression of human cDNA for the ETB endothelin receptor. Biochem Biophys Res Commun 178:656–663

    Article  CAS  PubMed  Google Scholar 

  • San Miguel JF, Schlag R, Khuageva NK et al (2008) Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med 359(9):906–917

    Article  CAS  PubMed  Google Scholar 

  • Seece DE (2007) Management of multiple myeloma: the changing landscape. Blood Rev 21:301–314

    Article  CAS  Google Scholar 

  • Shankar A, Loizidou M, Aliev G, Fredericks S, Holt D, Boulos B et al (1998) Raised endothelin 1 levels in patients with colorectal liver metastases. Br J Surg 85:502–506

    Article  CAS  PubMed  Google Scholar 

  • Shannon TR, Hale CC (1994) Identification of a 65 kDa endothelin receptor in bovine cardiac sarcolemmal vesicles. Eur J Pharm 267:233–238

    Article  CAS  Google Scholar 

  • Shichiri M, Hirata Y, Nakajima T, Ando K, Imai T, Yanagisawa M, Masaki T, Marumo F (1991) Endothelin-1 is an autocrine/paracrine growth factor for human cancer cell lines. J Clin Invest 87:1867–1871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shipp MA, Look AT (1993) Hematopoietic differentiation antigens that are membrane-associated enzymes: cutting is the key! Blood 84:1052–1070

    Google Scholar 

  • Shipp MA, Tarr GE, Chen CY, Switzer SN, Hersh LB, Steins H, Sundays ME, Reinherz EL (1991) CD10/neutral endopeptidase 24.11 hydrolyzes bombesin-like peptides and regulates the growth of small cell carcinomas of the lung. Proc Natl Acad Sci USA 88:10662–10666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shuqing Lu, Wang Jianmin (2013) The resistance mechanisms of proteasome inhibitor bortezomib. Biomark Res 1:13

    Article  Google Scholar 

  • Simonson M, Dunn M (1990) Cellular signaling by peptides of the endothelin gene family. FASEB J 4:2989–3000

    CAS  PubMed  Google Scholar 

  • Smollich M, Wulfing P (2007) The endothelin axis: a novel target for pharmacotherapy of female malignancies. Curr Vasc Pharmacol 5:239–248

    Article  CAS  PubMed  Google Scholar 

  • Spinella F, Rosano L, Di Castro V, Nicotra MR, Natali PG, Bagnato A (2003) Endothelin-1 decreases gap junctional intercellular communication by inducing phosphorylation of connexin 43 in human ovarian carcinoma cells. J Biol Chem 278:41294–41301

    Article  CAS  PubMed  Google Scholar 

  • Spinella F, Rosano L, Di Castro V, Nicotra MR, Natali PG, Bagnato A (2004) Inhibition of cyclooxygenase-1 and -2 expression by targeting the endothelin a receptor in human ovarian carcinoma cells. Clin Cancer Res 10:4670–4679

    Article  CAS  PubMed  Google Scholar 

  • Takasura T, Sakurai T, Goto K, Furuichi Y, Watanabe T (1994) Human endothelin recptor ETB. J Biol Chem 269:7509–7513

    Google Scholar 

  • Tamkus T, Leece C, Gallo K, Madhukar BV, Dimitrov N (2011) Endothelin-1/endothelin A receptor signaling in breast cancer, poster session 2. Cancer Res 71(24 Suppl): Abstract nr P2-03-06

  • Testa JR, Bellacosa A (2001) AKT plays a central role in tumorigenesis. Proc Natl Acad Sci USA 98:10983–10985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsapakidis K, Vlachostergios PJ, Voutsadakis JA, Befani CD, Patrikidou A, Hatzidaki E, Daliani DD, Moutzouris G, Liakos P, Papandreou CN (2012) Bortezomib reverses the proliferative and antiapoptotic effect of neuropeptides on prostate cancer cells. Int J Urol 19:565–574

    Article  CAS  PubMed  Google Scholar 

  • Tsutsumi M, Liang G, Jones PA (1999) Novel endothelin B receptor transcripts with the potential of generating a new receptor. Gene 228:43–49

    Article  CAS  PubMed  Google Scholar 

  • Voortman J, Checinska A, Giaccone G (2007) The proteasomal and apoptotic phenotype determine bortezomib sensitivity of non-small cell lung cancer cells. Mol Cancer 6:73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Warzocha K, Kraj M, Poglod R, Kwasniak B (2008) Bortezomib in multiple myeloma: treatment and retreatment. A single center experience. Acta Pol Pharm 65:753–756

    CAS  PubMed  Google Scholar 

  • Wolf J, Richardson PG, Schuster M, BlancA Le, Walters IB, Battleman DS (2008) Utility of bortezomib retreatment in relapsed or refractory multiple myeloma patients: a multicenter case series. Clin Adv Hematol Oncol 6:755–760

    PubMed  Google Scholar 

  • Wu-Wong JR, Chiou WJ, Wang J (2000) Extracellular signal-regulated kinases are involved in the antiapoptotic effect of endothelin-1. J Pharmacol Exp Ther 293:514–521

    CAS  PubMed  Google Scholar 

  • Xu GW, Ali M, Wood TE, Wong D, Maclean N, Wang X, Gronda M, Skrtic M, Li X, Hurren R, Mao X, Veukatesan M, Beheshti Zavareh R, Ketela T, Reed JC, Rose D, Moffat J, Batey RA, Dhe-Paganon S, Schimmer AD (2010) The ubiquitin-activating enzyme E1 as a therapeutic target for the treatment of leukemia and multiple myeloma. Blood 115:2251–2259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi E, Yamanoi A, Ono T, Nagasue N (2007) Experimental investigation of the role of endothelin-1 in idiopathic portal hypertension. J Gastroenterol Hepatol 22:1134–1140

    Article  CAS  PubMed  Google Scholar 

  • Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S, Epstein J, Yaccob Sh et al (2006) The molecular classification of multiple myeloma. Blood 108:2020–2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Krishnamoorthy RR, Prasanna G, Narayan S, Clark A, Yorio T (2003a) Dexamethasone regulates endothelin-1 and endothelin receptors in human non-pigmented ciliary epithelial (HNPE) cells. Exp Eye Res 76:261–272

    Article  PubMed  CAS  Google Scholar 

  • Zhang YM, Wang K-Q, Zhou G-M, Zuo J, Ge J-B (2003b) Endothelin-1 promoted proliferation of vascular smooth muscle cell through pathway of extracellular signal-regulated kinase and cyclin D1. Acta Pharmacol Sin 24:563–568

    CAS  PubMed  Google Scholar 

  • Zhou L, Hou J, Fu W, Wang D, Yuan Z, Jiang H (2008) Arsenic trioxide and 2-methoxyestradiol reduce β-catenin accumulation after proteasome inhibition and enhance the sensitivity of myeloma cells to bortezomib. Leuk Res 32:1674–1683

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Barlogie B, Shaughnessy JD (2009) The molecular characterization and clinical management of multiple myeloma in the post-genome era. Leukemia 23(11):1941–1956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Konstantinos Dimas or Christos Papandreou.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No human participants were used in this study.

Additional information

Konstantinos Dimas and Christos Papandreou have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Growth of MM cells in medium containing 0.5 % or 5 % serum. Growth curves obtained for RPMI-8226 (a) and NCI-H929 (b) cell lines in medium supplemented with 0.5 % or 5 % FBS. Cell growth was determined by MTT assay at 24, 48 and 72 h. Results were expressed as the mean ± SD from two independent experiments each performed in triplicate. (TIFF 115 kb)

Fig. S2

NEP cellular expression and activity in MM cell lines. (a) Western blot analysis of NEP expression in RPMI-8226 (left) and NCI-H929 cells (right). b-Actin is used as loading control. (b) NEP-specific activity (pmoles/μg/min) in RPMI-8226 (left) and NCI-H929 cells (right). LNCaP cell lysates were used as positive controls. Each point represents a mean ± SD of two independent experiments carried out in triplicate. (TIFF 154 kb)

Fig. S3

ETAR receptor is not involved in developing BTZ resistance. NCI-H929 (a) and RPMI-8226 (b) cell lines were treated in the absence or presence of ETAR antagonist (BQ123, 0.1 μM for 30 min), ET-1 (100 nM for 48 h) and BTZ (2 nM for 24 h) and cell proliferation analyzed by MTT assay. Incubation with medium served as control. Data represent mean values ± SD of two independent experiments each one performed in triplicate are indicated. P < 0.05; *vs CTL, #vs BTZ or BQ788, **vs ET-1 + BTZ, ##vs ET-1. (TIFF 219 kb)

Fig. S4

ETBR blockade potentiates the BTZ-mediated inhibition of myeloma cell proliferation and proteasome 20S activity. RPMI-8226 cells were either untreated (control) or treated with 0.1 μM ETBR antagonist, 100 nM ET-1 and 5 nM BTZ (IC50 of RPMI-8226 cells) as described in Materials and Methods. Cell proliferation (a) and levels of proteasome activity (b) were determined by MTT assay and proteasomal activity assay, respectively. Results were expressed as the mean ± SD from two independent experiments each one performed in at least duplicate. P < 0.05; *vs CTL, #vs BTZ or BQ788, **vs ET-1 + BTZ, ##vs ET-1. (TIFF 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaiou, M., Pangou, E., Liakos, P. et al. Endothelin-1 (ET-1) induces resistance to bortezomib in human multiple myeloma cells via a pathway involving the ETB receptor and upregulation of proteasomal activity. J Cancer Res Clin Oncol 142, 2141–2158 (2016). https://doi.org/10.1007/s00432-016-2216-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-016-2216-2

Keywords

Navigation