Skip to main content

Advertisement

Log in

A tumor hypoxic niche protects human colon cancer stem cells from chemotherapy

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Hypoxia has been found to play an important role in regulating the biological characteristics of cancer stem cells (cCSCs). In this study, we tested whether a tumor hypoxic niche serves to the chemotherapeutic resistance of colon cCSCs.

Methods

Each of 23 fresh samples of human colon adenocarcinoma was transplanted into nude mice. The tumor-bearing mice randomly and equally received (A) saline, (B) 5-fluorouracil (15 mg/kg), (C) oxaliplatin (10 mg/kg), and (D) oxaliplatin plus 5-fluorouracil when xenografts reached 250 mm3 (n = 10). After 2-week treatment, tumor cells were quantified by flow cytometry for expression of CD133 and the hypoxic proportion of CD133+ and CD133 cells which were also sorted and detected for ki67 and pimonidazole via immunofluorescence.

Results

The hypoxic subpopulation of CD133+ and CD133 cells was 66.5 and 26.4 %, respectively. Although there was no marked change for the hypoxic subpopulation of CD133+ cells after treatment, the hypoxic fraction of proliferative CD133+ cells was increased by 14.62, 16.45, and 20.46 % in groups B, C, and D, respectively. Furthermore, proliferative cells in CD133+ and CD133 cells were reduced by 29.93 and 62.5 % in group C, and by 25.26 and 68.22 % in group D; in group B, however, the proliferative CD133+ cells were increased by 37.09 %; the CD133 cells were unchanged.

Conclusions

Most CD133+ cCSCs are located in a hypoxic niche, where cCSCs are better at retaining proliferating property under chemotherapy. Oxaliplatin, rather than 5-FU, inhibits proliferation of cCSCs, which may be the mechanism underlying a better outcome by oxaliplatin in colon cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Axelson H, Fredlund E, Ovenberger M, Landberg G, Pahlman S (2005) Hypoxia-induced dedifferentiation of tumor cells—a mechanism behind heterogeneity and aggressiveness of solid tumors. Semin Cell Dev Biol 16(4–5):554–563

    PubMed  CAS  Google Scholar 

  • Bapat SA, Mali AM, Koppikar CB, Kurrey NK (2005) Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res 65(8):3025

    PubMed  CAS  Google Scholar 

  • Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737

    Article  PubMed  CAS  Google Scholar 

  • Brown JM (2007) Tumor hypoxia in cancer therapy. Methods Enzymol 435:295–321

    Article  Google Scholar 

  • Brown JM, Giaccia AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58(7):1408

    PubMed  CAS  Google Scholar 

  • Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11(1):69–82

    Article  PubMed  CAS  Google Scholar 

  • Collins A, Berry P, Hyde C, Stower M, Maitland N (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65(23):10946–10951. doi:10.1158/0008-5472.CAN-05-2018

    Article  PubMed  CAS  Google Scholar 

  • Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP (2002) Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 62(12):3387

    PubMed  CAS  Google Scholar 

  • Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ, Labosky PA (2006) HIF-2alpha regulates Oct-4 effects of hypoxia on stem cell function embryonic development and tumor growth. Genes Dev 20(5):557–570

    Article  PubMed  CAS  Google Scholar 

  • Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5(4):275–284

    Article  PubMed  CAS  Google Scholar 

  • Dontu G, El-Ashry D, Wicha MS (2004) Breast cancer, stem/progenitor cells and the estrogen receptor. Trends Endocrinol Metab 15(5):193–197

    Article  PubMed  CAS  Google Scholar 

  • Genbacev O, Zhou Y, Ludlow JW, Fisher SJ (1997) Regulation of human placental development by oxygen tension. Science 277(5332):1669

    Article  PubMed  CAS  Google Scholar 

  • Goethals L, Debucquoy A, Perneel C, Geboes K, Ectors N, De Schutter H, Penninckx F, McBride WH, Begg AC, Haustermans KM (2006) Hypoxia in human colorectal adenocarcinoma: comparison between extrinsic and potential intrinsic hypoxia markers. Int J Radiat Oncol Biol Phys 65(1):246–254

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J, Ruas JL, Poellinger L, Lendahl U, Bondesson M (2005) Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 9(5):617–628

    Article  PubMed  CAS  Google Scholar 

  • Hamburger AW, Salmon SE (1977) Primary bioassay of human tumor stem cells. Science 197(4302):461–463

    Article  PubMed  CAS  Google Scholar 

  • Harris AL (2002) Hypoxia-A key regulatory factor in tumour growth. Nat Rev Cancer 2(1):38–47

    Article  PubMed  CAS  Google Scholar 

  • Hermann PC, Bhaskar S, Cioffi M, Heeschen C (2010) Cancer stem cells in solid tumors. Semin Cancer Biol 20(2):77–84

    Article  PubMed  CAS  Google Scholar 

  • Horst D, Kriegl L, Engel J, Kirchner T, Jung A (2008) CD133 expression is an independent prognostic marker for low survival in colorectal cancer. Br J Cancer 99(8):1285–1289

    Article  PubMed  CAS  Google Scholar 

  • Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics. CA Cancer J Clin 60(5):277–300

    Article  PubMed  Google Scholar 

  • Keith B, Simon MC (2007) Hypoxia-inducible factors, stem cells, and cancer. Cell 129(3):465–472

    Article  PubMed  CAS  Google Scholar 

  • Krishnamurthy P, Ross DD, Nakanishi T, Bailey-Dell K, Zhou S, Mercer KE, Sarkadi B, Sorrentino BP, Schuetz JD (2004) The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem 279(23):24218

    Article  PubMed  CAS  Google Scholar 

  • LaBarge MA, Bissell MJ (2008) Is CD133 a marker of metastatic colon cancer stem cells? J Clin Investig 118(6):2021

    PubMed  CAS  Google Scholar 

  • Levesque JP, Winkler IG, Hendy J, Williams B, Helwani F, Barbier V, Nowlan B, Nilsson SK (2007) Hematopoietic progenitor cell mobilization results in hypoxia with increased hypoxia-inducible transcription factor-1 alpha and vascular endothelial growth factor A in bone marrow. Stem Cells 25(8):1954–1965. doi:10.1634/stemcells.2006-0688

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, Shi Q, Cao Y, Lathia J, McLendon RE (2009) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15(6):501–513

    Article  PubMed  CAS  Google Scholar 

  • Meyerhardt JA, Mayer RJ (2005) Systemic therapy for colorectal cancer. N Engl J Med 352(5):476–487

    Article  PubMed  CAS  Google Scholar 

  • Moore KA, Lemischka IR (2006) Stem cells and their niches. Science 311(5769):1880

    Article  PubMed  CAS  Google Scholar 

  • Nishi H, Nakada T, Kyo S, Inoue M, Shay JW, Isaka K (2004) Hypoxia-inducible factor 1 mediates upregulation of telomerase (hTERT). Mol Cell Biol 24(13):6076

    Article  PubMed  CAS  Google Scholar 

  • O’Brien CA, Pollett A, Gallinger S, Dick JE (2006) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445(7123):106–110

    Article  PubMed  Google Scholar 

  • Olive P, Durand R, Raleigh J, Luo C, Aquino-Parsons C (2000) Comparison between the comet assay and pimonidazole binding for measuring tumour hypoxia. Br J Cancer 83(11):1525

    Article  PubMed  CAS  Google Scholar 

  • Omura K (2008) Advances in chemotherapy against advanced or metastatic colorectal cancer. Digestion 77(1):13–22

    Article  PubMed  CAS  Google Scholar 

  • Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3(12):895–902

    Article  PubMed  CAS  Google Scholar 

  • Parmar K, Mauch P, Vergilio JA, Sackstein R, Down JD (2007) Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Nat Acad Sci 104(13):5431

    Article  PubMed  CAS  Google Scholar 

  • Platet N, Liu SY, Atifi ME, Oliver L, Vallette FM, Berger F, Wion D (2007) Influence of oxygen tension on CD133 phenotype in human glioma cell cultures. Cancer Lett 258(2):286–290

    Article  PubMed  CAS  Google Scholar 

  • Pouyssegur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441(7092):437–443

    Article  PubMed  CAS  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    Article  PubMed  CAS  Google Scholar 

  • Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R (2006) Identification and expansion of human colon-cancer-initiating cells. Nature 445(7123):111–115

    Article  PubMed  Google Scholar 

  • Seidel S, Garvalov BK, Wirta V, Von Stechow L, Schänzer A, Meletis K, Wolter M, Sommerlad D, Henze AT, Nistér M (2010) A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2α. Brain 133(Pt 4):983–995

    Article  PubMed  Google Scholar 

  • Semenza GL (2009) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29(5):625–634

    Article  PubMed  Google Scholar 

  • Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushner J, Milde T, Clair RS, Baljevic M, White I, Jin DK (2008) CD133 expression is not restricted to stem cells, and both CD133+ and CD133 metastatic colon cancer cells initiate tumors. J Clin Investig 118(6):2111

    PubMed  CAS  Google Scholar 

  • Singh S, Hawkins C, Clarke I, Squire J, Bayani J, Hide T, Henkelman R (2004) Identification of human brain tumor initiating cells. Nature 432(7015):396–401. doi:10.1038/nature03031

    Article  PubMed  CAS  Google Scholar 

  • Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F, Tripodo C, Russo A, Gulotta G, Medema JP (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1(4):389–402

    Article  PubMed  CAS  Google Scholar 

  • Yin T, Li L (2006) The stem cell niches in bone. J Clin Investig 116(5):1195

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Fund of China (30870734, 81172131); “The 12th Five-year plan” for Technology Platform Construction of Innovative Drug Research and Development of China (2011ZX09302-001); The National Basic Research 550 Program of China( 2007CB947802).

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianming Mo or You Lu.

Additional information

Qin Mao and Yu Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, Q., Zhang, Y., Fu, X. et al. A tumor hypoxic niche protects human colon cancer stem cells from chemotherapy. J Cancer Res Clin Oncol 139, 211–222 (2013). https://doi.org/10.1007/s00432-012-1310-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-012-1310-3

Keywords

Navigation