Skip to main content

Advertisement

Log in

Combinations of various CpG motifs cloned into plasmid backbone modulate and enhance protective immunity of viral replicon DNA anthrax vaccines

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

DNA vaccines are generally weak stimulators of the immune system. Fortunately, their efficacy can be improved using a viral replicon vector or by the addition of immunostimulatory CpG motifs, although the design of these engineered DNA vectors requires optimization. Our results clearly suggest that multiple copies of three types of CpG motifs or combinations of various types of CpG motifs cloned into a viral replicon vector backbone with strong immunostimulatory activities on human PBMC are efficient adjuvants for these DNA vaccines to modulate and enhance protective immunity against anthrax, although modifications with these different CpG forms in vivo elicited inconsistent immune response profiles. Modification with more copies of CpG motifs elicited more potent adjuvant effects leading to the generation of enhanced immunity, which indicated a CpG motif dose-dependent enhancement of antigen-specific immune responses. Notably, the enhanced and/or synchronous adjuvant effects were observed in modification with combinations of two different types of CpG motifs, which provides not only a contribution to the knowledge base on the adjuvant activities of CpG motifs combinations but also implications for the rational design of optimal DNA vaccines with combinations of CpG motifs as “built-in” adjuvants. We describe an efficient strategy to design and optimize DNA vaccines by the addition of combined immunostimulatory CpG motifs in a viral replicon DNA plasmid to produce strong immune responses, which indicates that the CpG-modified viral replicon DNA plasmid may be desirable for use as vector of DNA vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PA:

Anthrax protective antigen

PA4:

Receptor binding domain of protective antigen

PBMC:

Peripheral blood mononuclear cells

ODN:

Oligodeoxynucleotide

SFV:

Semliki Forest virus

GMT:

Geometric mean titer

TNA:

Toxin-neutralizing antibody

References

  1. Ulmer JB, Wahren B, Liu MA (2006) Gene-based vaccines: recent technical and clinical advances. Trends Mol Med 12:216–222

    Article  CAS  PubMed  Google Scholar 

  2. Liu MA (2011) DNA vaccines: an historical perspective and view to the future. Immunol Rev 239:62–84

    Article  CAS  PubMed  Google Scholar 

  3. Li L, Saade F, Petrovsky N (2012) The future of human DNA vaccines. J Biotechnol 162:171–182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Bins AD, van den Berg JH, Oosterhuis K, Haanen JB (2013) Recent advances towards the clinical application of DNA vaccines. Neth J Med 71:109–117

    CAS  PubMed  Google Scholar 

  5. Abdulhaqq SA, Weiner DB (2008) DNA vaccines: developing new strategies to enhance immune responses. Immunol Res 42:219–232

    Article  CAS  PubMed  Google Scholar 

  6. Saade F, Petrovsky N (2012) Technologies for enhanced efficacy of DNA vaccines. Expert Rev Vaccines 11:189–209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Lundstrom K (2000) Alphavirus vectors: applications for DNA vaccines production and gene expression. Intervirology 43:247–257

    Article  CAS  PubMed  Google Scholar 

  8. Vander Veen RL, Harris DL, Kamrud KI (2012) Alphavirus replicon vaccines. Anim Health Res Rev 13:1–9

    Article  PubMed  Google Scholar 

  9. Davis HL (2000) CpG motifs for optimization of DNA vaccines. Dev Biol (Basel) 104:165–169

    CAS  Google Scholar 

  10. Klinman DM (2003) CpG DNA as a vaccine adjuvant. Expert Rev Vaccines 2:305–315

    Article  CAS  PubMed  Google Scholar 

  11. Leitner WW, Hwang LN, deVeer MJ, Zhou A, Silverman RH, Williams BR, Dubensky TW, Ying H, Restifo NP (2003) Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways. Nat Med 9:33–39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Ljungberg K, Whitmore AC, Fluet ME, Moran RS, Shabman ML, Collier AA, Kraus AA, Thompson JM, Montefiori DC, Beard C et al (2007) Increased immunogenicity of a DNA-launched Venezuelan equine encephalitis virus-based replicon DNA vaccine. J Virol 81:13412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Näslund TI, Kostic L, Nordström EK, Chen M, Liljeström P (2011) Role of innate signaling pathways in the immunogenicity of alphaviral replicon-based vaccines. Virol J 8:36

    Article  PubMed Central  PubMed  Google Scholar 

  14. Knudsen ML, Mbewe-Mvula A, Rosario M, Johansson DX, Kakoulidou M, Bridgeman A, Reyes-Sandoval A, Nicosia A, Ljungberg K, Hanke T et al (2012) Superior induction of T cell responses to conserved HIV-1 regions by electroporated alphavirus replicon DNA compared to that with conventional plasmid DNA vaccine. J Virol 86:4082–4090

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Sato Y, Roman M, Tighe H, Lee D, Corr M, Nguyen MD, Silverman GJ, Lotz M, Carson DA, Raz E (1996) Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 273:352–354

    Article  CAS  PubMed  Google Scholar 

  16. Klinman DM, Yamshchikov G, Ishigatsubo Y (1997) Contribution of CpG motifs to the immunogenicity of DNA vaccines. J Immunol 158:3635–3639

    CAS  PubMed  Google Scholar 

  17. Krieg AM, Wu T, Weeratna R, Efler SM, Love-Homan L, Yang L, Yi AK, Short D, Davis HL (1998) Sequence motifs in adenoviral DNA block immune activation by stimulatory CpG motifs. Proc Natl Acad Sci USA 95:12631–12636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Coban C, Ishii KJ, Gursel M, Klinman DM, Kumar N (2005) Effect of plasmid backbone modification by different human CpG motifs on the immunogenicity of DNA vaccine vectors. J Leukoc Biol 78:647–655

    Article  CAS  PubMed  Google Scholar 

  19. Yu YZ, Li N, Ma Y, Wang S, Yu WY, Sun ZW (2013) Three types of human CpG motifs differentially modulate and augment immunogenicity of non-viral and viral replicon DNA vaccines as built-in adjuvants. Eur J Immunol 43:228–239

    Article  CAS  PubMed  Google Scholar 

  20. Hoene V, Peiser M, Wanner R (2006) Human monocyte-derived dendritic cells express TLR9 and react directly to the CpG-A oligonucleotide D19. J Leukoc Biol 80:1328–1336

    Article  CAS  PubMed  Google Scholar 

  21. Rynkiewicz D, Rathkopf M, Sim I, Waytes AT, Hopkins RJ, Giri L, DeMuria D, Ransom J, Quinn J, Nabors GS, Nielsen CJ (2011) Marked enhancement of the immune response to BioThrax(R) (Anthrax Vaccine Adsorbed) by the TLR9 agonist CPG 7909 in healthy volunteers. Vaccine 29:6313–6320

    Article  CAS  PubMed  Google Scholar 

  22. Marshall JD, Fearon K, Abbate C, Subramanian S, Yee P, Gregorio J, Coffman RL (2003) Van Nest G (2003) Identification of a novel CpG DNA class and motif that optimally stimulate B cell and plasmacytoid dendritic cell functions. J Leukoc Biol 73:781–792

    Article  CAS  PubMed  Google Scholar 

  23. Yu YZ, Zhang SM, Sun ZW, Wang S, Yu WY (2007) Enhanced immune responses using plasmid DNA replicon vaccine encoding the Hc domain of Clostridium botulinum neurotoxin serotype A. Vaccine 25:8843–8850

    Article  CAS  PubMed  Google Scholar 

  24. Yu YZ, Guo JP, An HJ, Zhang SM, Wang S, Yu WY, Sun ZW (2013) Potent tetravalent replicon vaccines against botulinum neurotoxins using DNA-based Semliki Forest virus replicon vectors. Vaccine 31:2427–2432

    Article  CAS  PubMed  Google Scholar 

  25. Ma Y, Yu YZ, Zhu YF, Xu Q, Sun ZW (2013) In vitro and in vivo activities of recombinant anthrax protective antigen co-expressed with thioredoxin in Escherichia coli. Hum Vaccin Immunother 9:242–249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Vollmer J, Weeratna R, Payette P, Jurk M, Schetter C, Laucht M, Wader T, Tluk S, Liu M, Davis HL et al (2004) Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur J Immunol 34:251–262

    Article  CAS  PubMed  Google Scholar 

  27. Liu Y, Luo X, Yang C, Yu S, Xu H (2011) Three CpG oligodeoxynucleotide classes differentially enhance antigen-specific humoral and cellular immune responses in mice. Vaccine 29:5778–5784

    Article  CAS  PubMed  Google Scholar 

  28. Chen YS, Hsiao YS, Lin HH, Liu Y, Chen YL (2006) CpG-modified plasmid DNA encoding flagellin improves immunogenicity and provides protection against Burkholderia pseudomallei infection in BALB/c mice. Infect Immun 74:1699–1705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kojima Y, Xin KQ, Ooki T, Hamajima K, Oikawa T, Shinoda K, Ozaki T, Hoshino Y, Jounai N, Nakazawa M et al (2002) Adjuvant effect of multi-CpG motifs on an HIV-1 DNA vaccine. Vaccine 20:2857–2865

    Article  CAS  PubMed  Google Scholar 

  30. Pontarollo RA, Babiuk LA, Hecker R, Van Drunen Littel-Van Den Hurk S (2002) Augmentation of cellular immune responses to bovine herpesvirus-1 glycoprotein D by vaccination with CpG-enhanced plasmid vectors. J Gen Virol 83:2973–2981

    CAS  PubMed  Google Scholar 

  31. Schneeberger A, Wagner C, Zemann A, Luhrs P, Kutil R, Goos M, Stingl G, Wagner SN (2004) CpG motifs are efficient adjuvants for DNA cancer vaccines. J Invest Dermatol 123:371–379

    Article  CAS  PubMed  Google Scholar 

  32. Zhang A, Jin H, Zhang F, Ma Z, Tu Y, Ren Z, Zhang X, Zhu K, Wang B (2005) Effects of multiple copies of CpG on DNA vaccination. DNA Cell Biol 24:292–298

    Article  CAS  PubMed  Google Scholar 

  33. Chen Y, Xiang LX, Shao JZ (2007) Construction of a recombinant plasmid containing multi-copy CpG motifs and its effects on the innate immune responses of aquatic animals. Fish Shellfish Immunol 23:589–600

    Article  PubMed  Google Scholar 

  34. Martinez-Alonso S, Martinez-Lopez A, Estepa A, Cuesta A, Tafalla C (2011) The introduction of multi-copy CpG motifs into an antiviral DNA vaccine strongly up-regulates its immunogenicity in fish. Vaccine 29:1289–1296

    Article  CAS  PubMed  Google Scholar 

  35. Shoda LK, Kegerreis KA, Suarez CE, Mwangi W, Knowles DP, Brown WC (2001) Immunostimulatory CpG-modified plasmid DNA enhances IL-12, TNF-alpha, and NO production by bovine macrophages. J Leukoc Biol 70:103–112

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Natural Science Foundation of China (30901375) and Beijing Natural Science Foundation (7102125).

Conflict of interest

The authors declare no financial or commercial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun-Zhou Yu or Zhi-Wei Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, YZ., Ma, Y., Xu, WH. et al. Combinations of various CpG motifs cloned into plasmid backbone modulate and enhance protective immunity of viral replicon DNA anthrax vaccines. Med Microbiol Immunol 204, 481–491 (2015). https://doi.org/10.1007/s00430-014-0359-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-014-0359-9

Keywords

Navigation