Skip to main content

Advertisement

Log in

Subversion of early innate antiviral responses during antibody-dependent enhancement of Dengue virus infection induces severe disease in immunocompetent mice

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Dengue is a mosquito-borne disease caused by one of four serotypes of Dengue virus (DENV-1–4). Epidemiologic and observational studies demonstrate that the majority of severe dengue cases, dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS), occurs predominantly in either individuals with cross-reactive immunity following a secondary heterologous infection or in infants with primary DENV infections born from dengue-immune mothers, suggesting that B-cell-mediated and antibody responses impact on disease evolution. We demonstrate here that B cells play a pivotal role in host responses against primary DENV infection in mice. After infection, μMT−/− mice showed increased viral loads followed by severe disease manifestation characterized by intense thrombocytopenia, hemoconcentration, cytokine production and massive liver damage that culminated in death. In addition, we show that poly and monoclonal anti-DENV-specific antibodies can sufficiently increase viral replication through a suppression of early innate antiviral responses and enhance disease manifestation, so that a mostly non-lethal illness becomes a fatal disease resembling human DHF/DSS. Finally, treatment with intravenous immunoglobulin containing anti-DENV antibodies confirmed the potential enhancing capacity of subneutralizing antibodies to mediate virus infection and replication and induce severe disease manifestation of DENV-infected mice. Thus, our results show that humoral responses unleashed during DENV infections can exert protective or pathological outcomes and provide insight into the pathogenesis of this important human pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fagundes CT, Costa VV, Cisalpino D, Souza DG, Teixeira MM (2011) Therapeutic opportunities in dengue infection. Drug Devel Res 72:480–500. doi:10.1002/ddr.20455

    Article  CAS  Google Scholar 

  2. Costa VV, Fagundes CT, da Gloria de Souza D, Teixeira MM (2013) Inflammatory and innate immune responses in dengue infection: protection versus disease induction. Am J Pathol 182(6):1950–1961. doi:10.1016/j.ajpath.2013.02.027

    Article  CAS  PubMed  Google Scholar 

  3. Simmons CP, Farrar JJ, Nguyen VV, Wills B (2012) Dengue. N Engl J Med 366:1423–1432. doi:10.1056/NEJMra1110265

    Article  CAS  PubMed  Google Scholar 

  4. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI (2013) The global distribution and burden of dengue. Nature 496:504–507. doi:10.1038/nature12060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Guzman MG, Alvarez M, Halstead SB (2013) Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection. Arch Virol 158(7):1445–1459. doi:10.1007/s00705-013-1645-3

    Article  CAS  PubMed  Google Scholar 

  6. Wilder-Smith A, Renhorn K-E, Tissera H, Bakar SA, Alphey L, Kittayapong P, Lindsay Steve, Logan J, Hatz C, Reiter P, Rocklov J, Byass Peter, Louis VR, Tozan Y, Massad E, Tenorio A, Lagneau C, L’Ambert G, Brooks D, Wegerdt J, Gubler D (2012) DengueTools: innovative tools and strategies for the surveillance and control of dengue. Glob Health Action 5:17273. doi:10.3402/gha.v5i0.17273

    Google Scholar 

  7. Normile D (2013) Surprising new Dengue virus throws a spanner in disease control efforts. Science 342(6157):415. doi:10.1126/science.342.6157.415

    Article  CAS  PubMed  Google Scholar 

  8. Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, Hunsperger E, Kroeger A, Margolis H, Martinez E, Nathan MB, Pelegrino JL, Simmons C, Yoksan S, Peeling RW (2010) Dengue: a continuing global threat. Nat Rev Microbiol 8:S7–S16. doi:10.1038/nrmicro2460

    Article  CAS  PubMed  Google Scholar 

  9. Balmaseda A, Hammond SN, Perez L, Tellez Y, Saborio SI, Mercado JC, Cuadra R, Rocha J, Perez MA, Silva S, Rocha C, Harris E (2006) Serotype-specific differences in clinical manifestations of dengue. Am J Trop Med Hyg 74:449–456

    PubMed  Google Scholar 

  10. Clyde K, Kyle JL, Harris E (2006) Recent advances in deciphering viral and host determinants of Dengue virus replication and pathogenesis. J Virol 80:11418–11431. doi:10.1128/JVI.01257-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Wahala WM, Silva AM (2011) The human antibody response to Dengue virus infection. Viruses 3:2374–2395. doi:10.3390/v3122374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kliks SC, Nimmanitya S, Nisalak A, Burke DS (1988) Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants. Am J Trop Med Hyg 38:411–419

    CAS  PubMed  Google Scholar 

  13. Chau TN, Quyen NT, Thuy TT, Tuan NM, Hoang DM, Dung NTP, Lien LB, Quy NT, Hieu NT, Hien TT, Hung NT, Farrar J, Simmons C (2008) Dengue in Vietnamese infants–results of infection-enhancement assays correlate with age-related disease epidemiology, and cellular immune responses correlate with disease severity. J Infect Dis 198:516–524. doi:10.1086/590117

    Article  PubMed Central  PubMed  Google Scholar 

  14. Chau TN, Hieu NT, Anders KL, Wolbers M, le Lien B, Hieu LT, Hien TT, Hung NT, Farrar J, Whitehead, Simmons CP (2009) Dengue virus infections and maternal antibody decay in a prospective birth cohort study of Vietnamese infants. J Infect Dis 200:1893–1900. doi:10.1086/648407

    Article  CAS  PubMed  Google Scholar 

  15. Murphy BR, Whitehead SS (2011) Immune response to Dengue virus and prospects for a vaccine. Annu Rev Immunol 29:587–619. doi:10.1146/annurev-immunol-031210-101315

    Article  CAS  PubMed  Google Scholar 

  16. Rothman AL (2011) Immunity to Dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat Rev Immunol 11:532–543. doi:10.1038/nri3014

    Article  CAS  PubMed  Google Scholar 

  17. Halstead SB, Mahalingam S, Marovich MA, Ubol S, Mosser DM (2010) Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes. Lancet Infect Dis 10:712–722. doi:10.1016/S1473-3099(10)70166-3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Chareonsirisuthigul T, Kalayanarooj S, Ubol S (2007) Dengue virus (DENV) antibody-dependent enhancement of infection upregulates the production of anti-inflammatory cytokines, but suppresses anti-DENV free radical and pro-inflammatory cytokine production, in THP-1 cells. J Gen Virol 88:365–375. doi:10.1099/vir.0.82537-0

    Article  CAS  PubMed  Google Scholar 

  19. Ubol S, Phuklia W, Kalayanarooj S, Modhiran N (2010) Mechanisms of immune evasion induced by a complex of Dengue virus and preexisting enhancing antibodies. J Infect Dis 201:923–935. doi:10.1086/651018

    Article  CAS  PubMed  Google Scholar 

  20. Ubol S, Masrinoul P, Chaijaruwanich J, Kalayanarooj S, Charoensirisuthikul T, Kasisith J (2008) Differences in global gene expression in peripheral blood mononuclear cells indicate a significant role of the innate responses in progression of dengue fever but not dengue hemorrhagic fever. J Infect Dis 197:1459–1467. doi:10.1086/587699

    Article  CAS  PubMed  Google Scholar 

  21. Mongkolsapaya J, Dejnirattisai W, Xu XN, Vasanawathana S, Tangthawornchaikul N, Chairunsri A, Sawasdivorn S, Duagchinda T, Dong T, Rowland-Jones S, Yenchitsomanus PT, McMichael A, Malasit P, Screaton G (2003) Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat Med 9:921–927. doi:10.1038/nm887

    Article  CAS  PubMed  Google Scholar 

  22. Midgley CM, Bajwa-Joseph M, Vasanawathana S, Limpitikul W, Wills B, Flanagan A, Waiyaiya E, Tran HB, Cowper AE, Chotiyarnwong P, Grimes JM, Yoksan S, Malasit P, Simmons CP, Mongkolsapaya J, Screaton GR (2011) An in-depth analysis of original antigenic sin in Dengue virus infection. J Virol 85:410–421. doi:10.1128/JVI.01826-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Rothman AL (2010) Cellular immunology of sequential Dengue virus infection and its role in disease pathogenesis. Curr Top Microbiol Immunol 338:83–98. doi:10.1007/978-3-642-02215-9_7

    CAS  PubMed  Google Scholar 

  24. Friberg H, Bashyam H, Toyosaki-Maeda T, Potts JA, Greenough T, Kalayanarooj S, Gibbons RV, Nisalak A, Srikiatkhachorn A, Green S, Stephens HA, Rothman AL, Mathew A (2011) Cross-reactivity and expansion of dengue-specific T cells during acute primary and secondary infections in humans. Sci Rep 1:51. doi:10.1038/srep00051

    Article  PubMed Central  PubMed  Google Scholar 

  25. Friberg H, Burns L, Woda M, Kalayanarooj S, Endy TP, Stephens HA, Green S, Rothman AL, Mathew A (2011) Memory CD8 + T cells from naturally acquired primary Dengue virus infection are highly cross-reactive. Immunol Cell Biol 89:122–129. doi:10.1038/icb.2010.61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Mangada MM, Rothman AL (2005) Altered cytokine responses of dengue-specific CD4 + T cells to heterologous serotypes. J Immunol 175:2676–2683

    Article  CAS  PubMed  Google Scholar 

  27. Boonpucknavig S, Lohachitranond C, Nimmanitya S (1979) The pattern and nature of the lymphocyte population response in dengue hemorrhagic fever. Am J Trop Med Hyg 28:885–889

    CAS  PubMed  Google Scholar 

  28. Jampangern W, Vongthoung K, Jittmittraphap A, Worapongpaiboon S, Limkittikul K, Jampangern W, Chuansumrit A, Tarunotai U, Chongsa-nguan M (2007) Characterization of atypical lymphocytes and immunophenotypes of lymphocytes in patients with Dengue virus infection. Asian Pac J Allergy Immunol 25:27–36

    PubMed  Google Scholar 

  29. Garcia-Bates TM, Cordeiro MT, Nascimento EJ, Smith AP, Soares de Melo KM, McBurney SP, Evans JD, Marques ET Jr, Barratt-Boyes SM (2013) Association between magnitude of the virus-specific plasmablast response and disease severity in dengue patients. J Immunol 190:80–87. doi:10.4049/jimmunol.1103350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Wrammert J, Onlamoon N, Akondy RS, Perng GC, Polsrila K, Wrammert J, Chandele A, Kwissa M, Pulendran B, Wilson PC, Wittawatmongkol O, Yoksan S, Angkasekwinai N, Pattanapanyasat K, Chokephaibulkit K, Ahmed R (2012) Rapid and massive virus-specific plasmablast responses during acute Dengue virus infection in humans. J Virol 86:2911–2918. doi:10.1128/JVI.06075-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Shresta S, Kyle JL, Robert Beatty P, Harris E (2004) Early activation of natural killer and B cells in response to primary Dengue virus infection in A/J mice. Virology 319:262–273

    Article  CAS  PubMed  Google Scholar 

  32. Zompi S, Montoya M, Pohl MO, Balmaseda A, Harris E (2012) Dominant cross-reactive B cell response during secondary acute Dengue virus infection in humans. PLoS Negl Trop Dis 6:e1568. doi:10.1371/journal.pntd.0001568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Atrasheuskaya A, Petzelbauer P, Fredeking TM, Ignatyev G (2003) Anti-TNF antibody treatment reduces mortality in experimental Dengue virus infection. FEMS Immunol Med Microbiol 35:33–42. doi:10.1111/j.1574-695X.2003.tb00646.x

    Article  CAS  PubMed  Google Scholar 

  34. Souza DG, Fagundes CT, Sousa LP, Amaral FA, Souza RS, Souza AL, Kroon EG, Sachs D, Cunha FQ, Bukin E, Atrasheuskaya A, Ignatyev G, Teixeira MM (2009) Essential role of platelet-activating factor receptor in the pathogenesis of Dengue virus infection. Proc Natl Acad Sci USA 106:14138–14143. doi:10.1073/pnas.0906467106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Costa VV, Fagundes CT, Valadao DF, Cisalpino D, Dias AC, Costa VV, Silveira KD, Kangussu LM, Ávila TV, Bonfim MR, Bonaventura D, Silva TA, Sousa LP, Rachid MA, Vieira LQ, Menezes GB, de Paula AM, Atrasheuskaya A, Ignatyev G, Teixeira MM, Souza DG (2012) A model of DENV-3 infection that recapitulates severe disease and highlights the importance of IFN-gamma in host resistance to infection. PLoS Negl Trop Dis 6:e1663. doi:10.1371/journal.pntd.0001663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Page M, Thorpe R (1998) Purification of monoclonal antibodies. Methods Mol Biol 80:113–119

    Article  CAS  PubMed  Google Scholar 

  37. Russell PK, Nisalak A (1967) Dengue virus identification by the plaque reduction neutralization test. J Immunol 99:291–296

    CAS  PubMed  Google Scholar 

  38. Garcia CC, Russo RC, Guabiraba R, Fagundes CT, Polidoro RB, Tavares LP, Salgado AP, Cassali GD, Sousa LP, Machado AV, Teixeira MM (2010) Platelet-activating factor receptor plays a role in lung injury and death caused by Influenza A in mice. PLoS Pathog 6:e1001171. doi:10.1371/journal.ppat.1001171

    Article  PubMed Central  PubMed  Google Scholar 

  39. Saria A, Lundberg JM (1983) Evans blue fluorescence: quantitative and morphological evaluation of vascular permeability in animal tissues. J Neurosci Methods 8:41–49

    Article  CAS  PubMed  Google Scholar 

  40. Krege JH, Hodgin JB, Hagaman JR, Smithies O (1995) A noninvasive computerized tail-cuff system for measuring blood pressure in mice. Hypertension 25:1111–1115. doi:10.1161/01.HYP.25.5.1111

    Article  CAS  PubMed  Google Scholar 

  41. Halstead SB (1989) Antibody, macrophages, Dengue virus infection, shock, and hemorrhage: a pathogenetic cascade. Rev Infect Dis 11(Suppl 4):S830–S839

    Article  PubMed  Google Scholar 

  42. Rajapakse S (2009) Intravenous immunoglobulins in the treatment of dengue illness. Trans R Soc Trop Med Hyg 103:867–870. doi:10.1016/j.trstmh.2008.12.011

    Article  CAS  PubMed  Google Scholar 

  43. Dimaano EM, Saito M, Honda S, Miranda EA, Alonzo MT, Dimaano EM, Valerio MD, Mapua CA, Inoue S, Kumaori A, Matias R, Natividad FF, Oishi K (2007) Lack of efficacy of high-dose intravenous immunoglobulin treatment of severe thrombocytopenia in patients with secondary Dengue virus infection. Am J Trop Med Hyg 77:1135–1138

    PubMed  Google Scholar 

  44. Kreil TR, Eibl MM (1997) Pre- and postexposure protection by passive immunoglobulin but no enhancement of infection with a flavivirus in a mouse model. J Virol 71:2921–2927

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Guzman MG, Vazquez S (2010) The complexity of antibody-dependent enhancement of Dengue virus infection. Viruses 2:2649–2662. doi:10.3390/v2122649

    Article  PubMed Central  PubMed  Google Scholar 

  46. Halstead SB (1982) Immune enhancement of viral infection. Prog Allergy 31:301–364

    CAS  PubMed  Google Scholar 

  47. Diamond MS, Shrestha B, Marri A, Mahan D, Engle M (2003) B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J Virol 77:2578–2586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Chambers TJ, Droll DA, Walton AH, Schwartz J, Wold WS, Nickells J (2008) West Nile 25A virus infection of B-cell-deficient ((micro)MT) mice: characterization of neuroinvasiveness and pseudoreversion of the viral envelope protein. J Gen Virol 89:627–635. doi:10.1099/vir.0.83297-0

    Article  CAS  PubMed  Google Scholar 

  49. Moseman EA, Iannacone M, Bosurgi L, Tonti E, Chevrier N, Moseman EA, Tumanov A, Fu YX, Hacohen N, von Andrian UH (2012) B cell maintenance of subcapsular sinus macrophages protects against a fatal viral infection independent of adaptive immunity. Immunity 36:415–426. doi:10.1016/j.immuni.2012.01.013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Kelly-Scumpia KM, Scumpia PO, Weinstein JS, Delano MJ, Cuenca AG, Nacionales DC, Wynn JL, Lee PY, Kumagai Y, Efron PA, Akira S, Wasserfall C, Atkinson MA, Moldawer LL (2011) B cells enhance early innate immune responses during bacterial sepsis. J Exp Med 208:1673–1682. doi:10.1084/jem.20101715

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Marchette NJ, Halstead SB, Falkler WA Jr, Stenhouse A, Nash D (1973) Studies on the pathogenesis of dengue infection in monkeys. 3. Sequential distribution of virus in primary and heterologous infections. J Infect Dis 128:23–30

    Article  CAS  PubMed  Google Scholar 

  52. Halstead SB (1979) In vivo enhancement of Dengue virus infection in rhesus monkeys by passively transferred antibody. J Infect Dis 140:527–533

    Article  CAS  PubMed  Google Scholar 

  53. Goncalvez AP, Engle RE, St Claire M, Purcell RH, Lai CJ (2007) Monoclonal antibody-mediated enhancement of Dengue virus infection in vitro and in vivo and strategies for prevention. Proc Natl Acad Sci USA 104:9422–9427. doi:10.1073/pnas.0703498104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Balsitis SJ, Williams KL, Lachica R, Flores D, Kyle JL, Mehlhop E, Johnson S, Diamond MS, Beatty PR, Harris E (2010) Lethal antibody enhancement of dengue disease in mice is prevented by Fc modification. PLoS Pathog 6:e1000790. doi:10.1371/journal.ppat.1000790

    Article  PubMed Central  PubMed  Google Scholar 

  55. Zellweger RM, Prestwood TR, Shresta S (2010) Enhanced infection of liver sinusoidal endothelial cells in a mouse model of antibody-induced severe dengue disease. Cell Host Microbe 7:128–139. doi:10.1016/j.chom.2010.01.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Suhrbier A, La Linn M (2003) Suppression of antiviral responses by antibody-dependent enhancement of macrophage infection. Trends Immunol 24:165–168. doi:10.1016/S1471-4906(03)00065-6

    Article  CAS  PubMed  Google Scholar 

  57. Ubol S, Halstead SB (2010) How innate immune mechanisms contribute to antibody-enhanced viral infections. Clin Vaccine Immunol 17:1829–1835. doi:10.1128/CVI.00316-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Modhiran N, Kalayanarooj S, Ubol S (2010) Subversion of innate defenses by the interplay between DENV and pre-existing enhancing antibodies: TLRs signaling collapse. PLoS Negl Trop Dis 4:e924. doi:10.1371/journal.pntd.0000924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Perez AB, Sierra B, Garcia G, Aguirre E, Babel N, Perez AB, Alvarez M, Sanchez L, Valdes L, Volk HD, Guzman MG (2010) Tumor necrosis factor-alpha, transforming growth factor-beta1, and interleukin-10 gene polymorphisms: implication in protection or susceptibility to dengue hemorrhagic fever. Hum Immunol 71:1135–1140. doi:10.1016/j.humimm.2010.08.004

    Article  CAS  PubMed  Google Scholar 

  60. Boonnak K, Dambach KM, Donofrio GC, Tassaneetrithep B, Marovich MA (2011) Cell type specificity and host genetic polymorphisms influence antibody-dependent enhancement of Dengue virus infection. J Virol 85:1671–1683. doi:10.1128/JVI.00220-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Whitehead SS, Blaney JE, Durbin AP, Murphy BR (2007) Prospects for a Dengue virus vaccine. Nat Rev Microbiol 5:518–528. doi:10.1038/nrmicro1690

    Article  CAS  PubMed  Google Scholar 

  62. Halstead SB (2007) Dengue. Lancet 370:1644–1652

    Article  Google Scholar 

  63. Nimmerjahn F, Ravetch JV (2008) Anti-inflammatory actions of intravenous immunoglobulin. Annu Rev Immunol 26:513–533. doi:10.1146/annurev.immunol.26.021607.090232

    Article  CAS  PubMed  Google Scholar 

  64. Ben-Nathan D, Lustig S, Tam G, Robinzon S, Segal S, Rager-Zisman B (2003) Prophylactic and therapeutic efficacy of human intravenous immunoglobulin in treating West Nile virus infection in mice. J Infect Dis 188:5–12. doi:10.1086/376870

    Article  CAS  PubMed  Google Scholar 

  65. de Castro RA, de Castro JA, Barez MY, Frias MV, Dixit J, Genereux M (2007) Thrombocytopenia associated with dengue hemorrhagic fever responds to intravenous administration of anti-D (Rh(0)-D) immune globulin. Am J Trop Med Hyg 76:737–742

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ilma Marçal, Gilvânia Ferreira da Silva Santos and Franckcinéia Assis (ICB/UFMG) for technical assistance. Instituto Nacional de Ciência e Tecnologia em Dengue (INCT-Dengue); PRONEX em Dengue (Ministério da Saúde), Brazil; Conselho Nacional de Ciência de Desenvolvimento Científico e Tecnológico (CNPq); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG). VVC and CTF are supported by the “Science without Borders” program.

Conflict of interest

The authors have no conflicting financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle G. Souza.

Electronic supplementary material

Below is the link to the electronic supplementary material.

430_2014_334_MOESM1_ESM.tif

Figure S1: μMT / mice develop severe liver injury after primary DENV-3 inoculation. WT (n = 5) and μMT−/− (n = 7) mice were inoculated with 100PFU of DENV-3 (i.p) and seven days later, mice were culled and the liver collected for performing histopathological analysis. Liver tissues were formalin-fixed and processed into paraffin sections and were stained with hematoxylin and eosin. Histopathological scores of each mouse were performed. Representative images of each group of mice are shown (Scale Bar - 400 μm). All results are expressed as mean ± SEM and are representative at least two experiments. * for P < 0.05 when compared to WT-infected mice. NI—non-infected. HS – hepatocyte swelling. D – degeneration. N – necrosis. H – hemorrhage. OS – overall score (TIFF 11435 kb)

430_2014_334_MOESM2_ESM.tif

Figure S2: Subneutralizing titers of DENV-3-immune serum decreases survival time of DENV-3-inoculated mice and aggravate liver injury in DENV-3-inoculated mice. (A) WT mice (n = 8 mice per group) were administered with naïve serum or anti-DENV-3 serum (collected on day 49) and inoculated with 100PFU of DENV-3 (i.p) and lethality rates was evaluated every 12 h during 14 days. Results are expressed as  % of survival. In B, WT mice (n = 5 per group) treated with naïve or anti-DENV-3 serum were inoculated with 100PFU of DENV-3 (i.p), and seven days after infection, mice were culled and tissue collected for the histopathological analysis. Liver of control and DENV-3-infected mice were collected, formalin-fixed and processed into paraffin sections. Liver sections were stained with hematoxylin and eosin, and histopathological scores of each mouse were performed. Representative images of each group of mice are shown (Scale Bar - 400 μm). All results are expressed as mean ± SEM and are representative at least two experiments. # for P < 0.05 when compared to WT-infected naïve serum treated mice. Dpi—days post-infection. HS—hepatocyte swelling. D—degeneration. N—necrosis. H—hemorrhage. OS—overall score (TIFF 11830 kb)

430_2014_334_MOESM3_ESM.tif

Figure S3: DENV-induced liver injury in 4G2-treated mice depends on mAb dose. WT mice (n = 6 per group) were administered with different doses of the mouse monoclonal antibody—4G2 (IgG2a anti-Envelope protein, pan-flavivirus-reactive) or with an isotype control antibody with irrelevant specificity followed by inoculation of 100PFU of DENV-3 (i.p). Seven days later, mice were culled tissue collected for the histopathological analysis. Liver of control and DENV-3-infected mice were collected, formalin-fixed and processed into paraffin sections. Liver sections were stained with hematoxylin and eosin, and histopathological scores of each mouse were performed. Representative images of each group of mice are shown (Scale Bar - 400 μm). All results are expressed as mean ± SEM and are representative at least two experiments. # for P < 0.05 when compared to isotype control DENV-3-infected mice. ** for P < 0.05 when compared to 4G2 (15 μg) DENV-3-infected mice. HS—hepatocyte swelling. D—degeneration. N—necrosis. H—hemorrhage. OS—overall score (TIFF 12555 kb)

430_2014_334_MOESM4_ESM.tif

Figure S4. In vivo blockade of FcγRs impairs the liver injury induced by the treatment with subneutralizing doses of anti-DENV mAbs in DENV-infected mice. WT mice (n = 5 per group) were administered with 15 μg of the mouse monoclonal antibody—4G2 (IgG2a anti-Envelope protein, pan-flavivirus-reactive) or with an isotype control antibody with irrelevant specificity followed by inoculation of 100PFU of DENV-3 (i.p). Another two groups received the anti-DENV 4G2 mAb together with the Fc-blocking antibody (clone 2.4G2) or were administered with the isotype control mAb and the Fc-blocker. Seven days later, mice were culled tissue collected for performing the histopathological analysis. Liver of control and DENV-3-infected mice were collected, formalin-fixed and processed into paraffin sections. Liver sections were stained with hematoxylin and eosin, and histopathological scores of each mouse were performed. Representative images of each group of mice are shown (Scale Bar - 400 μm). All results are expressed as mean ± SEM and are representative at least two experiments. # for P < 0.05 when compared to isotype control or isotype control + 2.4G2 DENV-3-infected mice. ** for P < 0.05 when compared to 4G2 DENV-3-infected mice. ND—non-detected. HS—hepatocyte swelling. D—degeneration. N—necrosis. H—hemorrhage. OS—overall score (TIFF 12766 kb)

430_2014_334_MOESM5_ESM.tif

Figure S5: Mice deficient for the type I (IFN-α/β) receptors (A129 / ) are very susceptible to primary DENV infection. (A) WT and A129 / mice (n = 8 mice per group) were inoculated with 100PFU of DENV-2 (i.p), and lethality rates were evaluated every 12 h during 12 days. Results are expressed as  % of survival. In B-G, WT (n = 5) and A129 / mice (n = 5-10) were inoculated with 100PFU of DENV-2 (i.p), and three, five or seven days after infection, mice were culled and blood and tissue collected for the following analysis: (B-C) Viral loads recovered from spleen or blood by plaque assay in Vero cells. Results are shown as the log of PFU per g of spleen or PFU per mL of blood, respectively. (D) Number of platelets, shown as platelets X 103/μl of blood. (E) Hematocrit, shown as  % volume occupied by red blood cells. (F) Concentrations of TNF-α in serum, quantified by ELISA. Results are shown as pg per mL (serum). (G) ALT activity determination in plasma of control and DENV-2-infected mice is shown as U/dL of plasma. All results are expressed as mean ± SEM (except for B-C, expressed as median) and are representative of at least two experiments. * for P < 0.05 when compared to control uninfected mice. # for P < 0.05 when compared to WT-infected mice. NI—non-infected. dpi—days post-infection. ND—non-detected (TIFF 2917 kb)

430_2014_334_MOESM6_ESM.tif

Figure S6: Treatment of mice with IVIG containing non-neutralizing levels of α-DENV antibodies enhances liver injury after DENV-3 inoculation. Vehicle and α-DENV IVIG-treated mice—dose of 100 mg/kg (n = 5 per group)—were inoculated with 100PFU of DENV-3 (i.p), and seven days later, mice were culled and the liver collected for performing histopathological analysis. Liver of control and DENV-3-infected mice were collected, formalin-fixed and processed into paraffin sections. Liver sections were stained with hematoxylin and eosin, and histopathological scores of each mouse were performed. Representative images of each group of mice are shown (Scale Bar - 400 μm). Results are expressed as mean ± SEM and are representative at least two experiments. * for P < 0.05 when compared to vehicle-treated and DENV-3-infected mice. NI—non-infected. HS—hepatocyte swelling. D—degeneration. N—necrosis. H—hemorrhage. OS—overall score (TIFF 10166 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, V.V., Fagundes, C.T., Valadão, D.F. et al. Subversion of early innate antiviral responses during antibody-dependent enhancement of Dengue virus infection induces severe disease in immunocompetent mice. Med Microbiol Immunol 203, 231–250 (2014). https://doi.org/10.1007/s00430-014-0334-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-014-0334-5

Keywords

Navigation