Skip to main content

Advertisement

Log in

Expression patterns of Irx genes in the developing chick inner ear

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The vertebrate inner ear is a complex three-dimensional sensorial structure with auditory and vestibular functions. The molecular patterning of the developing otic epithelium creates various positional identities, consequently leading to the stereotyped specification of each neurosensory and non-sensory element of the membranous labyrinth. The Iroquois (Iro/Irx) genes, clustered in two groups (A: Irx1, Irx2, and Irx4; and B: Irx3, Irx5, and Irx6), encode for transcriptional factors involved directly in numerous patterning processes of embryonic tissues in many phyla. This work presents a detailed study of the expression patterns of these six Irx genes during chick inner ear development, paying particular attention to the axial specification of the otic anlagen. The Irx genes seem to play different roles at different embryonic periods. At the otic vesicle stage (HH18), all the genes of each cluster are expressed identically. Both clusters A and B seem involved in the specification of the lateral and posterior portions of the otic anlagen. Cluster B seems to regulate a larger area than cluster A, including the presumptive territory of the endolymphatic apparatus. Both clusters seem also to be involved in neurogenic events. At stages HH24/25-HH27, combinations of IrxA and IrxB genes participate in the specification of most sensory patches and some non-sensory components of the otic epithelium. At stage HH34, the six Irx genes show divergent patterns of expression, leading to the final specification of the membranous labyrinth, as well as to cell differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ac:

Anterior crista

AG:

Acoustic ganglion

asc:

Anterior semicircular canal

AVG:

Acoustic-vestibular ganglion

bp:

Basilar papilla

cc:

Common crus

cd:

Cochlear duct

ect:

Ectoderm

ed:

Endolymphatic duct

es:

Endolymphatic sac

HB:

Hindbrain

hp:

Horizontal pouch

lc:

Lateral crista

lsc:

Lateral semicircular canal

ml:

Macula lagena

mn:

Macula neglecta

ms:

Macula sacculi

mu:

Macula utriculi

ov:

Otic vesicle

pc:

Posterior crista

psc:

Posterior semicircular canal

s:

Saccule

tv:

Tegmentum vasculosum

u:

Utricle

VG:

Vestibular ganglion

vp:

Vertical pouch

References

  • Abelló G, Alsina B (2007) Establishment of a proneural field in the inner ear. Int J Dev Biol 51:483–493

    Article  PubMed  CAS  Google Scholar 

  • Abelló G, Khatri S, Giráldez F, Alsina B (2007) Early regionalization of the otic placode and its regulation by the Notch signaling pathway. Mech Dev 124:631–645

    Article  PubMed  CAS  Google Scholar 

  • Abelló G, Khatri S, Radosevic M, Scotting PJ, Giráldez F, Alsina B (2010) Independent regulation of Sox3 and Lmx1b by FGF and BMP signaling influences the neurogenic and non-neurogenic domains in the chick otic placode. Dev Biol 339:166–178

    Article  PubMed  CAS  Google Scholar 

  • Alsina B, Abelló G, Ulloa E, Henrique D, Pujades C, Giraldez F (2004) FGF signaling is required for determination of otic neuroblasts in the chick embryo. Dev Biol 267:119–134

  • Bao ZZ, Bruneau BG, Seidman JG, Seidman CE, Cepko CL (1999) Regulation of chamber-specific gene expression in the developing heart by Irx4. Science 283:1161–1164

    Article  CAS  PubMed  Google Scholar 

  • Becker MB, Zulch A, Bosse A, Gruss P (2001) Irx1 and Irx2 expression in early lung development. Mech Dev 106:155–168

    Article  CAS  PubMed  Google Scholar 

  • Bellefroid EJ, Kobbe A, Gruss P, Pieler T, Gurdon JB, Papalopulu N (1998) Xiro3 encodes a Xenopus homolog of the Drosophila Iroquois genes and functions in neural specification. EMBO J 17:191–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bok J, Bronner-Fraser M, Wu DK (2005) Role of the hindbrain in dorsoventral but not anteroposterior axial specification of the inner ear. Development 132:2115–2124

    Article  CAS  PubMed  Google Scholar 

  • Bok J, Chang W, Wu DK (2007a) Patterning and morphogenesis of the vertebrate inner ear. Int J Dev Biol 51:521–533

    Article  CAS  PubMed  Google Scholar 

  • Bok J, Dolson DK, Hill P, Ruther U, Epstein DJ, Wu DK (2007b) Opposing gradients of Gli repressor and activators mediate Shh signaling along the dorsoventral axis of the inner ear. Development 134:1713–1722

    Article  CAS  PubMed  Google Scholar 

  • Bok J, Raft S, Kong KA, Koo SK, Drager UC, Wu DK (2011) Transient retinoic acid signaling confers anterior-posterior polarity to the inner ear. Proc Natl Acad Sci USA 108:161–166

    Article  CAS  PubMed  Google Scholar 

  • Bosse A, Zulch A, Becker MB, Torres M, Gómez-Skarmeta JL, Modolell J, Gruss P (1997) Identification of the vertebrate Iroquois homeobox gene family with overlapping expression during early development of the nervous system. Mech Dev 69:169–181

    Article  CAS  PubMed  Google Scholar 

  • Bosse A, Stoykova A, Nieselt-Struwe K, Chowdhury K, Copeland NG, Jenkins NA, Gruss P (2000) Identification of a novel mouse Iroquois homeobox gene, Irx5, and chromosomal localisation of all members of the mouse Iroquois gene family. Dev Dyn 218:160–174

    Article  CAS  PubMed  Google Scholar 

  • Brigande JV, Kiernan AE, Gao X, Iten LE, Fekete DM (2000) Molecular genetics of pattern formation in the inner ear: do compartment boundaries play a role? Proc Natl Acad Sci USA 97:11700–11706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briscoe J, Ericson J (2001) Specification of neuronal fates in the ventral neural tube. Curr Opin Neurobiol 11:43–49

    Article  CAS  PubMed  Google Scholar 

  • Briscoe J, Pierani A, Jessell TM, Ericson J (2000) A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101:435–445

    Article  CAS  PubMed  Google Scholar 

  • Bruneau BG, Bao ZZ, Fatkin D, Xavier-Neto J, Georgakopoulos D, Maguire CT, Berul CI, Kass DA, Kuroski-de Bold ML, de Bold AJ, Conner DA, Rosenthal N, Cepko CL, Seidman CE, Seidman JG (2001) Cardiomyopathy in Irx4-deficient mice is preceded by abnormal ventricular gene expression. Mol Cell Biol 21:1730–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bürglin TR (1997) Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Res 25:4173–4180

    Article  PubMed  PubMed Central  Google Scholar 

  • Calleja M, Renaud O, Usui K, Pistillo D, Morata G, Simpson P (2002) How to pattern an epithelium: lessons from achaete-scute regulation on the notum of Drosophila. Gene 292:1–12

    Article  CAS  PubMed  Google Scholar 

  • Cantos R, Cole LK, Acampora D, Simeone A, Wu DK (2000) Patterning of the mammalian cochlea. Proc Natl Acad Sci USA 97:11707–11713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casarosa S, Andreazzoli M, Simeone A, Barsacchi G (1997) Xrx1, a novel Xenopus homeobox gene expressed during eye and pineal gland development. Mech Dev 61:187–198

    Article  CAS  PubMed  Google Scholar 

  • Cavodeassi F, Díez-del-Corral R, Campuzano S, Domínguez M (1999) Compartments and organising boundaries in the Drosophila eye: the role of the homeodomain Iroquois proteins. Development 126:4933–4942

    CAS  PubMed  Google Scholar 

  • Cavodeassi F, Modolell J, Gómez-Skarmeta JL (2001) The Iroquois family of genes: from body building to neural patterning. Development 128:2847–2855

    CAS  PubMed  Google Scholar 

  • Cavodeassi F, Rodríguez I, Modolell J (2002) Dpp signalling is a key effector of the wing-body wall subdivision of the Drosophila mesothorax. Development 129:3815–3823

    CAS  PubMed  Google Scholar 

  • Chatterjee S, Kraus P, Lufkin T (2010) A symphony of inner ear developmental control genes. BMC Genet 11:68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen J, Streit A (2013) Induction of the inner ear: stepwise specification of otic fate from multipotent progenitors. Hear Res 297:3–12

    Article  PubMed  Google Scholar 

  • Cheng CW, Chow RL, Lebel M, Sakuma R, Cheung HO, Thanabalasingham V, Zhang X, Bruneau BG, Birch DG, Hui CC, McInnes RR, Cheng SH (2005) The Iroquois homeobox gene, Irx5, is required for retinal cone bipolar cell development. Dev Biol 287:48–60

    Article  CAS  PubMed  Google Scholar 

  • Cheng CW, Yan CH, Hui CC, Strahle U, Cheng SH (2006) The homeobox gene irx1a is required for the propagation of the neurogenic waves in the zebrafish retina. Mech Dev 123:252–263

    Article  CAS  PubMed  Google Scholar 

  • Cheng CW, Yan CH, Choy SW, Hui MN, Hui CC, Cheng SH (2007) Zebrafish homologue irx1a is required for the differentiation of serotonergic neurons. Dev Dyn 236:2267–2661

    Google Scholar 

  • Christoffels VM, Keijser AG, Houweling AC, Clout DE, Moorman AF (2000) Patterning the embryonic heart: identification of five mouse Iroquois homeobox genes in the developing heart. Dev Biol 224:263–274

    Article  CAS  PubMed  Google Scholar 

  • Cohen DR, Cheng CW, Cheng SH, Hui CC (2000) Expression of two novel mouse Iroquois homeobox genes during neurogenesis. Mech Dev 91:317–321

    Article  CAS  PubMed  Google Scholar 

  • Constantini DL, Arruda EP, Agarwal P, Kim KH, Zhu Y, Zhu W, Lebel M, Cheng CW, Park CY, Pierce SA, Guerchicoff A, Pollevick GD, Chan TY, Kabir MG, Cheng SH, Husain M, Antzelevitch C, Srivastava D, Gross GJ, Hui CC, Backx PH, Bruneau BG (2005) The homeodomain transcription factor Irx5 establishes the mouse cardiac ventricular repolarization gradient. Cell 123:347–358

    Article  CAS  Google Scholar 

  • de la Calle-Mustienes E, Feijóo CG, Manzanares M, Tena JJ, Rodríguez-Seguel E, Letizia A, Allende ML, Gómez-Skarmeta JL (2005) A functional survey of the enhancer activity of conserved non-coding sequences from vertebrate Iroquois cluster gene deserts. Genome Res 15:1061–1072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Díaz-Hernández ME, Bustamante M, Galván-Hernández CI, Chimal-Monroy J (2013) Irx1 and Irx2 are coordinately expressed and regulated by retinoic acid, TGFbeta and FGF signaling during chick hindlimb development. PLoS One 8:e58549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Díez-del-Corral R, Aroca P, Gómez-Skarmeta JL, Cavodeassi F, Modolell J (1999) The Iroquois homeodomain proteins are required to specify body wall identity in Drosophila. Genes Dev 13:1754–1761

    Article  PubMed  Google Scholar 

  • Díez-del-Corral R, Olivera-Martínez I, Goriely A, Gale E, Maden M, Storey K (2003) Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension. Neuron 40:65–79

    Article  PubMed  Google Scholar 

  • Dildrop R, Ruther U (2004) Organization of Iroquois genes in fish. Dev Genes Evol 214:267–276

    Article  CAS  PubMed  Google Scholar 

  • Domínguez M, de Celis JF (1998) A dorsal/ventral boundary established by Notch controls growth and polarity in the Drosophila eye. Nature 396:276–278

    Article  PubMed  Google Scholar 

  • Ekker M, Akimenko MA, Bremiller R, Westerfield M (1992) Regional expression of three homeobox transcripts in the inner ear of zebrafish embryos. Neuron 9:27–35

    Article  CAS  PubMed  Google Scholar 

  • El-Dahr SS, Aboudehen K, Saifudeen Z (2008) Transcriptional control of terminal nephron differentiation. Am J Physiol Renal Physiol 294:F1273–F1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feijóo CG, Manzanares M, de la Calle-Mustienes E, Gómez-Skarmeta JL, Allende ML (2004) The Irx gene family in zebrafish: genomic structure, evolution and initial characterization of irx5b. Dev Genes Evol 214:277–284

    Article  PubMed  CAS  Google Scholar 

  • Feijóo CG, Saldias MP, de la Paz JF, Gómez-Skarmeta JL, Allende ML (2009) Formation of posterior cranial placode derivatives requires the Iroquois transcription factor irx4a. Mol Cell Neurosci 40:328–337

    Article  PubMed  CAS  Google Scholar 

  • Fekete DM (1996) Cell fate specification in the inner ear. Curr Opin Neurobiol 6:533–541

    Article  CAS  PubMed  Google Scholar 

  • Fekete DM, Campero AM (2007) Axon guidance in the inner ear. Int J Dev Biol 51:549–556

    Article  CAS  PubMed  Google Scholar 

  • Fekete DM, Wu DK (2002) Revisiting cell fate specification in the inner ear. Curr Opin Neurobiol 12:35–42

    Article  CAS  PubMed  Google Scholar 

  • Ferran JL, Ayad A, Merchán P, Morales-Delgado N, Sánchez-Arrones L, Alonso A, Sandoval JE, Bardet SM, Corral-San-Miguel R, Sánchez-Guardado LO, Hidalgo-Sánchez M, Martínez-de-la-Torre M, Puelles L (2015) Exploring brain genoarchitecture by single and double chromogenic in situ hybridization (ISH) and immunohistochemistry (IHC) on cryostat, paraffin, or floating sections. In: Hauptmann G (ed) In situ hybridization Methods. Springer Protocols, Springer Science + Business Media, Berlin, pp 83–107

    Google Scholar 

  • Frenz DA, Liu W, Cvekl A, Xie Q, Wassef L, Quadro L, Niederreither K, Maconochie M, Shanske A (2010) Retinoid signaling in inner ear development: a “Goldilocks” phenomenon. Am J Med Genet A 152A:2947–2961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaborit N, Sakuma R, Wylie JN, Kim KH, Zhang SS, Hui CC, Bruneau BG (2012) Cooperative and antagonistic roles for Irx3 and Irx5 in cardiac morphogenesis and postnatal physiology. Development 139:4007–4019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Campmany L, Martí E (2007) The TGFbeta intracellular effector Smad3 regulates neuronal differentiation and cell fate specification in the developing spinal cord. Development 134:65–75

    Article  PubMed  CAS  Google Scholar 

  • Glavic A, Gómez-Skarmeta JL, Mayor R (2001) Xiro-1 controls mesoderm patterning by repressing bmp-4 expression in the Spemann organizer. Dev Dyn 222:368–376

    Article  CAS  PubMed  Google Scholar 

  • Glavic A, Gómez-Skarmeta JL, Mayor R (2002) The homeoprotein Xiro1 is required for midbrain-hindbrain boundary formation. Development 129:1609–1621

    CAS  PubMed  Google Scholar 

  • Glavic A, Maris-Honore S, Gloria-Feijóo C, Bastidas F, Allende ML, Mayor R (2004) Role of BMP signaling and the homeoprotein Iroquois in the specification of the cranial placodal field. Dev Biol 272:89–103

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Skarmeta JL, Modolell J (2002) Iroquois genes: genomic organization and function in vertebrate neural development. Curr Opin Genet Dev 12:403–408

    Article  PubMed  Google Scholar 

  • Gómez-Skarmeta JL, Díez-del-Corral R, de la Calle-Mustienes E, Ferre-Marco D, Modolell J (1996) Araucan and caupolican, two members of the novel iroquois complex, encode homeoproteins that control proneural and vein-forming genes. Cell 85:95–105

    Article  PubMed  Google Scholar 

  • Gómez-Skarmeta JL, Glavic A, de la Calle-Mustienes E, Modolell J, Mayor R (1998) Xiro, a Xenopus homolog of the Drosophila Iroquois complex genes, controls development at the neural plate. EMBO J 17:181–190

    Article  PubMed  PubMed Central  Google Scholar 

  • Goriely A, Díez-del-Corral R, Storey KG (1999) c-Irx2 expression reveals an early subdivision of the neural plate in the chick embryo. Mech Dev 87:203–206

    Article  CAS  PubMed  Google Scholar 

  • Groves AK, Fekete DM (2012) Shaping sound in space: the regulation of inner ear patterning. Development 139:245–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Article  CAS  PubMed  Google Scholar 

  • Hammond KL, Whitfield TT (2011) Fgf and Hh signalling act on a symmetrical pre-pattern to specify anterior and posterior identity in the zebrafish otic placode and vesicle. Development 138:3977–3987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hidalgo-Sanchez M, Alvarado-Mallart R, Alvarez IS (2000) Pax2, Otx2, Gbx2 and Fgf8 expression in early otic vesicle development. Mech Dev 95:225–229

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo-Sánchez M, Millet S, Bloch-Gallego E, Alvarado-Mallart RM (2005a) Specification of the meso-isthmo-cerebellar region: the Otx2/Gbx2 boundary. Brain Res Brain Res Rev 49:134–149

    Article  PubMed  Google Scholar 

  • Hidalgo-Sánchez M, Martínez-De-La-Torre M, Alvarado-Mallart R-M, Puelles L (2005b) A distinct preisthmic histogenetic domain is defined by overlap of Otx2 and Pax2 gene expression in the avian caudal midbrain. J Comp Neurol 483:17–29

    Article  PubMed  CAS  Google Scholar 

  • Hirata T, Nakazawa M, Muraoka O, Nakayama R, Suda Y, Hibi M (2006) Zinc-finger genes Fez and Fez-like function in the establishment of diencephalon subdivisions. Development 133:3993–4004

    Article  CAS  PubMed  Google Scholar 

  • Houweling AC, Dildrop R, Peters T, Mummenhoff J, Moorman AF, Ruther U, Christoffels VM (2001) Gene and cluster-specific expression of the Iroquois family members during mouse development. Mech Dev 107:169–174

    Article  CAS  PubMed  Google Scholar 

  • Ikmi A, Netter S, Coen D (2008) Prepatterning the Drosophila notum: the three genes of the iroquois complex play intrinsically distinct roles. Dev Biol 317:634–648

    Article  CAS  PubMed  Google Scholar 

  • Irimia M, Maeso I, García-Fernández J (2008) Convergent evolution of clustering of Iroquois homeobox genes across metazoans. Mol Biol Evol 25:1521–1525

    Article  CAS  PubMed  Google Scholar 

  • Itoh M, Kudoh T, Dedekian M, Kim CH, Chitnis AB (2002) A role for iro1 and iro7 in the establishment of an anteroposterior compartment of the ectoderm adjacent to the midbrain-hindbrain boundary. Development 129:2317–2327

    CAS  PubMed  Google Scholar 

  • Jin Z, Zhang J, Klar A, Chedotal A, Rao Y, Cepko CL, Bao ZZ (2003) Irx4-mediated regulation of Slit1 expression contributes to the definition of early axonal paths inside the retina. Development 130:1037–1048

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen JS, Gao L (2005) Irx3 is differentially up-regulated in female gonads during sex determination. Gene Expr Patterns 5:756–762

    Article  CAS  PubMed  Google Scholar 

  • Joseph EM (2004) Zebrafish IRX1b in the embryonic cardiac ventricle. Dev Dyn 231:720–726

    Article  CAS  PubMed  Google Scholar 

  • Kehl BT, Cho KO, Choi KW (1998) mirror, a Drosophila homeobox gene in the Iroquois complex, is required for sensory organ and alula formation. Development 125:1217–1227

    CAS  PubMed  Google Scholar 

  • Kelly MC, Chen P (2009) Development of form and function in the mammalian cochlea. Curr Opin Neurobiol 19:395–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerner P, Ikmi A, Coen D, Vervoort M (2009) Evolutionary history of the iroquois/Irx genes in metazoans. BMC Evol Biol 9:74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kiecker C, Lumsden A (2004) Hedgehog signaling from the ZLI regulates diencephalic regional identity. Nat Neurosci 7:1242–1249

    Article  CAS  PubMed  Google Scholar 

  • Kim KH, Rosen A, Bruneau BG, Hui CC, Backx PH (2012) Iroquois homeodomain transcription factors in heart development and function. Circ Res 110:1513–1524

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi D, Kobayashi M, Matsumoto K, Ogura T, Nakafuku M, Shimamura K (2002) Early subdivisions in the neural plate define distinct competence for inductive signals. Development 129:83–93

    CAS  PubMed  Google Scholar 

  • Kojima T, Asano S, Takahashi N (2013) Teratogenic factors affect transcription factor expression. Biosci Biotechnol Biochem 77:1035–1041

    Article  CAS  PubMed  Google Scholar 

  • Kudoh T, Dawid IB (2001) Role of the iroquois3 homeobox gene in organizer formation. Proc Natl Acad Sci USA 98:7852–7857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ladher RK, O’Neill P, Begbie J (2010) From shared lineage to distinct functions: the development of the inner ear and epibranchial placodes. Development 137:1777–1785

    Article  CAS  PubMed  Google Scholar 

  • Larroux C, Luke GN, Koopman P, Rokhsar DS, Shimeld SM, Degnan BM (2008) Genesis and expansion of metazoan transcription factor gene classes. Mol Biol Evol 25:980–996

    Article  CAS  PubMed  Google Scholar 

  • Lebel M, Agarwal P, Cheng CW, Kabir MG, Chan TY, Thanabalasingham V, Zhang X, Cohen DR, Husain M, Cheng SH, Bruneau BG, Hui CC (2003) The Iroquois homeobox gene Irx2 is not essential for normal development of the heart and midbrain-hindbrain boundary in mice. Mol Cell Biol 23:8216–8225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lecaudey V, Anselme I, Rosa F, Schneider-Maunoury S (2004) The zebrafish Iroquois gene iro7 positions the r4/r5 boundary and controls neurogenesis in the rostral hindbrain. Development 131:3121–3131

    Article  CAS  PubMed  Google Scholar 

  • Lecaudey V, Anselme I, Dildrop R, Ruther U, Schneider-Maunoury S (2005) Expression of the zebrafish Iroquois genes during early nervous system formation and patterning. J Comp Neurol 492:289–302

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Cantos R, Patente M, Wu DK (2005) Gbx2 is required for the morphogenesis of the mouse inner ear: a downstream candidate of hindbrain signaling. Development 132:2309–2318

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Liu C, Yamada Y, Fan CM (2002) Growth arrest specific gene 1 acts as a region-specific mediator of the Fgf10/Fgf8 regulatory loop in the limb. Development 129:5289–5300

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Liu W, Maltby KM, Lan Y, Jiang R (2006) Identification and developmental expression analysis of a novel homeobox gene closely linked to the mouse Twirler mutation. Gene Expr Patterns 6:632–636

  • López-Sánchez C, Bartulos O, Martínez-Campos E, Ganan C, Valenciano AI, García-Martínez V, De Pablo F, Hernández-Sánchez C (2010) Tyrosine hydroxylase is expressed during early heart development and is required for cardiac chamber formation. Cardiovasc Res 88:111–120

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto K, Nishihara S, Kamimura M, Shiraishi T, Otoguro T, Uehara M, Maeda Y, Ogura K, Lumsden A, Ogura T (2004) The prepattern transcription factor Irx2, a target of the FGF8/MAP kinase cascade, is involved in cerebellum formation. Nat Neurosci 7:605–612

    Article  CAS  PubMed  Google Scholar 

  • McNeill H, Yang CH, Brodsky M, Ungos J, Simon MA (1997) mirror encodes a novel PBX-class homeoprotein that functions in the definition of the dorsal-ventral border in the Drosophila eye. Genes Dev 11:1073–1082

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee K, Bürglin TR (2007) Comprehensive analysis of animal TALE homeobox genes: new conserved motifs and cases of accelerated evolution. J Mol Evol 65:137–153

    Article  CAS  PubMed  Google Scholar 

  • Mummenhoff J, Houweling AC, Peters T, Christoffels VM, Ruther U (2001) Expression of Irx6 during mouse morphogenesis. Mech Dev 103:193–195

    Article  CAS  PubMed  Google Scholar 

  • Novitch BG, Chen AI, Jessell TM (2001) Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron 31:773–789

    Article  CAS  PubMed  Google Scholar 

  • Ogura K, Matsumoto K, Kuroiwa A, Isobe T, Otoguro T, Jurecic V, Baldini A, Matsuda Y, Ogura T (2001) Cloning and chromosome mapping of human and chicken Iroquois (IRX) genes. Cytogenet Cell Genet 92:320–325

    Article  CAS  PubMed  Google Scholar 

  • Oh SH, Johnson R, Wu DK (1996) Differential expression of bone morphogenetic proteins in the developing vestibular and auditory sensory organs. J Neurosci 16:6463–6475

    CAS  PubMed  Google Scholar 

  • Ohyama T, Groves AK, Martin K (2007) The first steps towards hearing: mechanisms of otic placode induction. Int J Dev Biol 51:463–472

    Article  CAS  PubMed  Google Scholar 

  • Ozaki H, Nakamura K, Funahashi J, Ikeda K, Yamada G, Tokano H, Okamura HO, Kitamura K, Muto S, Kotaki H, Sudo K, Horai R, Iwakura Y, Kawakami K (2004) Six1 controls patterning of the mouse otic vesicle. Development 131:551–562

    Article  CAS  PubMed  Google Scholar 

  • Papayannopoulos V, Tomlinson A, Panin VM, Rauskolb C, Irvine KD (1998) Dorsal-ventral signaling in the Drosophila eye. Science 281:2031–2034

    Article  CAS  PubMed  Google Scholar 

  • Perovic S, Schroder HC, Sudek S, Grebenjuk VA, Batel R, Stifanic M, Muller IM, Muller WE (2003) Expression of one sponge Iroquois homeobox gene in primmorphs from Suberites domuncula during canal formation. Evol Dev 5:240–250

    Article  CAS  PubMed  Google Scholar 

  • Peters T, Dildrop R, Ausmeier K, Ruther U (2000) Organization of mouse Iroquois homeobox genes in two clusters suggests a conserved regulation and function in vertebrate development. Genome Res 10:1453–1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pichaud F, Casares F (2000) homothorax iroquois-C genes are required for the establishment of territories within the developing eye disc. Mech Dev 96:15–25

    Article  CAS  PubMed  Google Scholar 

  • Pose-Méndez S, Candal E, Mazan S, Rodríguez-Moldes I (2015) Genoarchitecture of the rostral hindbrain of a shark: basis for understanding the emergence of the cerebellum at the agnathan-gnathostome transition. Brain Struct Funct 1–15

  • Reggiani L, Raciti D, Airik R, Kispert A, Brandli AW (2007) The prepattern transcription factor Irx3 directs nephron segment identity. Genes Dev 21:2358–2370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riccomagno MM, Martinu L, Mulheisen M, Wu DK, Epstein DJ (2002) Specification of the mammalian cochlea is dependent on Sonic hedgehog. Genes Dev 16:2365–2378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riccomagno MM, Takada S, Epstein DJ (2005) Wnt-dependent regulation of inner ear morphogenesis is balanced by the opposing and supporting roles of Shh. Genes Dev 19:1612–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Seguel E, Alarcon P, Gómez-Skarmeta JL (2009) The Xenopus Irx genes are essential for neural patterning and define the border between prethalamus and thalamus through mutual antagonism with the anterior repressors Fezf and Arx. Dev Biol 329:258–268

    Article  PubMed  CAS  Google Scholar 

  • Romand R, Dolle P, Hashino E (2006) Retinoid signaling in inner ear development. J Neurobiol 66:687–704

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Calderón H, Martin-Partido G, Hidalgo-Sánchez M (2002) Differential expression of Otx2, Gbx2, Pax2, and Fgf8 in the developing vestibular and auditory sensory organs. Brain Res Bull 57:321–323

    Article  PubMed  Google Scholar 

  • Sánchez-Calderón H, Martín-Partido G, Hidalgo-Sánchez M (2004) Otx2, Gbx2, and Fgf8 expression patterns in the chick developing inner ear and their possible roles in otic specification and early innervation. Gene Expr Patterns 4:659–669

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Calderón H, Martín-Partido G, Hidalgo-Sánchez M (2005) Pax2 expression patterns in the developing chick inner ear. Gene Expr Patterns 5:763–773

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Calderón H, Milo M, León Y, Varela-Nieto I (2007a) A network of growth and transcription factors controls neuronal differentation and survival in the developing ear. Int J Dev Biol 51:557–570

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Calderón H, Francisco-Morcillo J, Martin-Partido G, Hidalgo-Sánchez M (2007b) Fgf19 expression patterns in the developing chick inner ear. Gene Expr Patterns 7:30–38

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Guardado LO, Ferran JL, Mijares J, Puelles L, Rodríguez-Gallardo L, Hidalgo-Sánchez M (2009) Raldh3 gene expression pattern in the developing chicken inner ear. J Comp Neurol 514:49–65

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Guardado LO, Ferran JL, Rodríguez-Gallardo L, Puelles L, Hidalgo-Sánchez M (2011) Meis gene expression patterns in the developing chicken inner ear. J Comp Neurol 519:125–147

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Guardado LO, Puelles L, Hidalgo-Sánchez M (2013) Fgf10 expression patterns in the developing chick inner ear. J Comp Neurol 521:1136–1164

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Guardado LO, Puelles L, Hidalgo-Sánchez M (2014) Fate map of the chicken otic placode. Development 141:2302–2312

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Araki I, Nakamura H (2001) Inductive signal and tissue responsiveness defining the tectum and the cerebellum. Development 128:2461–2469

    CAS  PubMed  Google Scholar 

  • Schimmang T (2007) Expression and functions of FGF ligands during early otic development. Int J Dev Biol 51:473–481

    Article  CAS  PubMed  Google Scholar 

  • Schlosser G (2005) Induction and specification of cranial placodes. Dev Biol 294:303–351

    Article  CAS  Google Scholar 

  • Schlosser G (2006) Induction and specification of cranial placodes. Dev Biol 294:303–351

    Article  CAS  PubMed  Google Scholar 

  • Schlosser G, Ahrens K (2004) Molecular anatomy of placode development in Xenopus laevis. Dev Biol 271:439–466

    Article  CAS  PubMed  Google Scholar 

  • Schneider-Maunoury S, Pujades C (2007) Hindbrain signals in otic regionalization: walk on the wild side. Int J Dev Biol 51:495–506

    Article  PubMed  Google Scholar 

  • Stedman A, Lecaudey V, Havis E, Anselme I, Wassef M, Gilardi-Hebenstreit P, Schneider-Maunoury S (2009) A functional interaction between Irx and Meis patterns the anterior hindbrain and activates krox20 expression in rhombomere 3. Dev Biol 327:566–577

    Article  CAS  PubMed  Google Scholar 

  • Tan JT, Korzh V, Gong Z (1999) Expression of a zebrafish iroquois homeobox gene, Ziro3, in the midline axial structures and central nervous system. Mech Dev 87:165–181

    Article  CAS  PubMed  Google Scholar 

  • Tena JJ, Alonso ME, de la Calle-Mustienes E, Splinter E, de Laat W, Manzanares M, Gómez-Skarmeta JL (2011) An evolutionarily conserved three-dimensional structure in the vertebrate Irx clusters facilitates enhancer sharing and coregulation. Nat Commun 2:310

    Article  PubMed  CAS  Google Scholar 

  • Thompson DL, Gerlach-Bank LM, Barald KF, Koenig RJ (2003) Retinoic acid repression of bone morphogenetic protein 4 in inner ear development. Mol Cell Biol 23:2277–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villa-Cuesta E, Modolell J (2005) Mutual repression between msh and Iro-C is an essential component of the boundary between body wall and wing in Drosophila. Development 132:4087–4096

    Article  CAS  PubMed  Google Scholar 

  • Wassarman KM, Lewandoski M, Campbell K, Joyner AL, Rubenstein JL, Martínez S, Martin GR (1997) Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function. Development 124:2923–2934

    CAS  PubMed  Google Scholar 

  • Whitfield TT, Hammond KL (2007) Axial patterning in the developing vertebrate inner ear. Int J Dev Biol 51:507–520

    Article  CAS  PubMed  Google Scholar 

  • Wu DK, Oh SH (1996) Sensory organ generation in the chick inner ear. J Neurosci 16:6454–6462

    CAS  PubMed  Google Scholar 

  • Yang CH, Simon MA, McNeill H (1999) mirror controls planar polarity and equator formation through repression of fringe expression and through control of cell affinities. Development 126:5857–5866

    CAS  PubMed  Google Scholar 

  • Zheng W, Huang L, Wei ZB, Silvius D, Tang B, Xu PX (2003) The role of Six1 in mammalian auditory system development. Development 130:3989–4000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zülch A, Becker MB, Gruss P (2001) Expression pattern of Irx1 and Irx2 during mouse digit development. Mech Dev 106:159–162

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by: Grant sponsor: Spanish Ministry of Science, BFU2010-19461; Grant sponsor: Junta de Extremadura, GR10152 (to M.H.-S.); Grant sponsor: MICINN, BFU2006-15530-C02/BFI (to L.R.-G.); Grant sponsor: Spanish Ministry of Science, BFU2005-09378-C02-01; Grant sponsor: MICINN, BFU2014-57516P; Grant sponsor: SENECA Foundation, 19904/GERM/15 (to L.P.); Grant sponsor: MICINN, BFU2006-15530-C01/BFI (to P.A); Grant sponsor: Junta-de-Extremadura predoctoral fellowship, PRE/08031 (to L.-O.S.-G.). The 3A10 antibody developed by T.M. Jessell and J. Dodd was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by The University of Iowa, Department of Biology, Iowa City, IA, USA.

Grant sponsor: BFU2010-19461 and GR10152 (M.H.S.); BFU2005-09378-C02-01, BFU2014-51517P (with FDR fond support), SENECA 04548/GERM/06-10891, and MICINN, ISCIII, CIBER en Enfermedades Raras U736 (L.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matías Hidalgo-Sánchez.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardeña-Núñez, S., Sánchez-Guardado, L.Ó., Corral-San-Miguel, R. et al. Expression patterns of Irx genes in the developing chick inner ear. Brain Struct Funct 222, 2071–2092 (2017). https://doi.org/10.1007/s00429-016-1326-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-016-1326-6

Keywords

Navigation