Skip to main content
Log in

A new window to understanding individual differences in reward sensitivity from attentional networks

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

An Erratum to this article was published on 14 November 2014

Abstract

Existing evidence suggests that the presence of reward cues modifies the activity in attentional networks, however, the nature of these influences remains poorly understood. Here, we performed independent component analysis (ICA) in two fMRI datasets corresponding to two incentive delay tasks, which compared the response to reward (money and erotic pictures) and neutral cues, and yielded activations in the ventral striatum using a general linear model approach. Across both experiments, ICA revealed that both the right frontoparietal network and default mode network time courses were positively and negatively modulated by reward cues, respectively. Moreover, this dual neural response pattern was enhanced in individuals with strong reward sensitivity. Therefore, ICA may be a complementary tool to investigate the relevant role of attentional networks on reward processing, and to investigate reward sensitivity in normal and pathological populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen EA, Erhardt EB, Damaraju E, Gruner W, Segall JM, Silva RF, Havlicek M, Rachakonda S, Fries J, Kalyanam R et al (2011) A baseline for the multivariate comparison of resting-state networks. Front Syst Neurosci 5:2

    PubMed Central  PubMed  Google Scholar 

  • Anticevic A, Cole MW, Murray JD, Corlett PR, Wang XJ, Krystal JH (2012) The role of default network deactivation in cognition and disease. Trends Cogn Sci 16:584–592

    Article  PubMed Central  PubMed  Google Scholar 

  • Ávila C (2001) Distinguishing BIS-mediated and BAS-mediated disinhibition mechanisms: a comparison of disinhibition models of Gray (1981, 1987) and of Patterson and Newman (1993). J Pers Soc Psychol 80:311–324

    Article  PubMed  Google Scholar 

  • Barrós-Loscertales A, Meseguer V, Sanjuán A, Belloch V, Parcet MA, Torrubia R, Ávila C (2006) Striatum gray matter reduction in males with an overactive behavioral activation system. Eur J Neurosci 24:2071–2074

    Article  PubMed  Google Scholar 

  • Barrós-Loscertales A, Ventura-Campos N, Sanjuán-Tomás A, Belloch V, Parcet MA, Avila C (2010) Behavioral activation system modulation on brain activation during appetitive and aversive stimulus processing. Soc Cogn Affect Neurosci 5:18–28

    Article  PubMed Central  PubMed  Google Scholar 

  • Beaver JD, Lawrence AD, Van Ditzhuijzen J, Davis MH, Woods A, Calder AJ (2006) Individual differences in reward drive predict neural responses to images of food. J Neurosci 26:5160–5166

    Article  CAS  PubMed  Google Scholar 

  • Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7:1129–1159

    Article  CAS  PubMed  Google Scholar 

  • Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S et al (2010) Toward discovery science of human brain function. Proc Natl Acad Sci USA 107:4734–4739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Braver TS (2012) The variable nature of cognitive control: a dual mechanisms framework. Trends Cogn Sci 16:106–113

    Article  PubMed Central  PubMed  Google Scholar 

  • Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14:140–151

    Article  CAS  PubMed  Google Scholar 

  • Calhoun VD, Liu J, Adali T (2009) A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage 45:S163–S172

    Article  PubMed Central  PubMed  Google Scholar 

  • Carter RM, Macinnes JJ, Huettel SA, Adcock RA (2009) Activation in the VTA and nucleus accumbens increases in anticipation of both gains and losses. Front Behav Neurosci 3:21

    Article  PubMed Central  PubMed  Google Scholar 

  • Caseras X, Ávila C, Torrubia R (2003) The measurement of individual differences in behavioural inhibition and behavioural activation systems: a comparison of personality scales. Pers Individ Dif 34:999–1013

    Article  Google Scholar 

  • Chica AB, Bartolomeo P, Lupiáñez J (2013) Two cognitive and neural systems for endogenous and exogenous spatial attention. Behav Brain Res 237:107–123

    Article  PubMed  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215

    Article  CAS  PubMed  Google Scholar 

  • Costumero V, Barrós-Loscertales A, Bustamante JC, Ventura-Campos N, Fuentes P, Rosell-Negre P, Avila C (2013) Reward sensitivity is associated with brain activity during erotic stimulus processing. PLoS One 8:e66940

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dang LC, O’Neil JP, Jagust WJ (2012) Dopamine supports coupling of attention-related networks. J Neurosci 32:9582–9587

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Derryberry D, Reed MA (1994) Temperament and attention: orienting toward and away from positive and negative signals. J Pers Soc Psychol 66:1128–1139

    Article  CAS  PubMed  Google Scholar 

  • Diekhof EK, Kaps L, Falkai P, Gruber O (2012) The role of the human ventral striatum and the medial orbitofrontal cortex in the representation of reward magnitude: an activation likelihood estimation meta-analysis of neuroimaging studies of passive reward expectancy and outcome processing. Neuropsychologia 50:1252–1266

    Article  PubMed  Google Scholar 

  • Engelmann JB, Damaraju E, Padmala S, Pessoa L (2009) Combined effects of attention and motivation on visual task performance: transient and sustained motivational effects. Front Hum Neurosci 3:4

    Article  PubMed Central  PubMed  Google Scholar 

  • Erhardt EB, Rachakonda S, Bedrick EJ, Allen EA, Adali T, Calhoun VD (2011) Comparison of multi-subject ICA methods for analysis of fMRI data. Hum Brain Mapp 32:2075–2095

    Article  PubMed Central  PubMed  Google Scholar 

  • Ernst M, Pine DS, Hardin M (2006) Triadic model of the neurobiology of motivated behavior in adolescence. Psychol Med 36:299–312

    Article  PubMed Central  PubMed  Google Scholar 

  • Fischer H, Nyberg L, Karlsson S, Karlsson P, Brehmer Y, Rieckmann A, MacDonald SWS, Farde L, Bäckman L (2010) Simulating neurocognitive aging: effects of a dopaminergic antagonist on brain activity during working memory. Biol Psychiatry 67:575–580

    Article  CAS  PubMed  Google Scholar 

  • Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210

    Article  Google Scholar 

  • Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100:253–258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guitart-Masip M, Fuentemilla L, Bach DR, Huys QJM, Dayan P, Dolan RJ, Duzel E (2011) Action dominates valence in anticipatory representations in the human striatum and dopaminergic midbrain. J Neurosci 31:7867–7875

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haber SN, Knutson B (2010) The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35:4–26

    Article  PubMed Central  PubMed  Google Scholar 

  • Hahn T, Dresler T, Ehlis AC, Plichta MM, Heinzel S, Polak T, Lesch KP, Breuer F, Jakob PM, Fallgatter AJ (2009) Neural response to reward anticipation is modulated by Gray’s impulsivity. Neuroimage 46:1148–1153

    Article  PubMed  Google Scholar 

  • Harrison BJ, Pujol J, Contreras-Rodríguez O, Soriano-Mas C, López-Solà M, Deus J, Ortiz H, Blanco-Hinojo L, Alonso P, Hernández-Ribas R et al (2011) Task-induced deactivation from rest extends beyond the default mode brain network. PLoS One 6:e22964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Himberg J, Hyvärinen A, Esposito F (2004) Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage 22:1214–1222

    Article  PubMed  Google Scholar 

  • Ivanov I, Liu X, Clerkin S, Schulz K, Friston K, Newcorn JH, Fan J (2012) Effects of motivation on reward and attentional networks: an fMRI study. Brain Behav 2:741–753

    Article  PubMed Central  PubMed  Google Scholar 

  • Jimura K, Locke HS, Braver TS (2010) Prefrontal cortex mediation of cognitive enhancement in rewarding motivational contexts. Proc Natl Acad Sci USA 107:8871–8876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Juárez M, Kiehl KA, Calhoun VD (2012) Intrinsic limbic and paralimbic networks are associated with criminal psychopathy. Hum Brain Mapp 00:1–10

    Google Scholar 

  • Kim D, Manoach DS, Mathalon DH, Turner JA, Mannell M, Brown GG, Ford JM, Gollub RL, White T, Wible C et al (2009) Dysregulation of working memory and default-mode networks in schizophrenia using independent component analysis, an fBIRN and MCIC study. Hum Brain Mapp 30:3795–3811

    Article  PubMed Central  PubMed  Google Scholar 

  • Knutson B, Cooper JC (2005) Functional magnetic resonance imaging of reward prediction. Curr Opin Neurol 18:411–417

    Article  PubMed  Google Scholar 

  • Knutson B, Greer SM (2008) Anticipatory affect: neural correlates and consequences for choice. Philos Trans R Soc Lond B Biol Sci 363:3771–3786

    Article  PubMed Central  PubMed  Google Scholar 

  • Knutson B, Adams CM, Fong GW, Hommer D (2001) Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci 21:RC159

    CAS  PubMed  Google Scholar 

  • Krebs RM, Boehler CN, Roberts KC, Song AW, Woldorff MG (2012) The involvement of the dopaminergic midbrain and cortico-striatal-thalamic circuits in the integration of reward prospect and attentional task demands. Cereb Cortex 22:607–615

    Article  PubMed Central  PubMed  Google Scholar 

  • Kroger JK, Sabb FW, Fales CL, Bookheimer SY, Cohen MS, Holyoak KJ (2002) Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: a parametric study of relational complexity. Cereb Cortex 12:477–485

    Article  PubMed  Google Scholar 

  • Kruglanski A, Shah J, Fishbach A, Friedman R, Chun WY, Sleeth-Kepple D (2002) A theory of goal systems. Adv Exp Soc Psychol 34:331–378

    Article  Google Scholar 

  • Langner R, Eickhoff SB (2013) Sustaining attention to simple tasks: a meta-analytic review of the neural mechanisms of vigilant attention. Psychol Bull 139:870–900

    Article  PubMed Central  PubMed  Google Scholar 

  • Li YO, Adali T, Calhoun VD (2007) Estimating the number of independent components for functional magnetic resonance imaging data. Hum Brain Mapp 28:1251–1266

    Article  PubMed  Google Scholar 

  • Liu X, Hairston J, Schrier M, Fan J (2011) Common and distinct networks underlying reward valence and processing stages: a meta-analysis of functional neuroimaging studies. Neurosci Biobehav Rev 35:1219–1236

    Article  PubMed Central  PubMed  Google Scholar 

  • Locke HS, Braver TS (2008) Motivational influences on cognitive control: behavior, brain activation, and individual differences. Cogn Affect Behav Neurosci 8:99–112

    Article  PubMed  Google Scholar 

  • Luman M, Van Meel CS, Oosterlaan J, Geurts HM (2012) Reward and punishment sensitivity in children with ADHD: validating the sensitivity to punishment and sensitivity to reward questionnaire for children (SPSRQ-C). J Abnorm Child Psychol 40:145–157

    Article  PubMed Central  PubMed  Google Scholar 

  • Mohanty A, Gitelman DR, Small DM, Mesulam MM (2008) The spatial attention network interacts with limbic and monoaminergic systems to modulate motivation-induced attention shifts. Cereb Cortex 18:2604–2613

    Article  PubMed Central  PubMed  Google Scholar 

  • Nagano-Saito A, Liu J, Doyon J, Dagher A (2009) Dopamine modulates default mode network deactivation in elderly individuals during the Tower of London task. Neurosci Lett 458:1–5

    Article  CAS  PubMed  Google Scholar 

  • Padmala S, Pessoa L (2011) Reward reduces conflict by enhancing attentional control and biasing visual cortical processing. J Cogn Neurosci 23:3419–3432

    Article  PubMed Central  PubMed  Google Scholar 

  • Parvaz MA, Konova AB, Tomasi D, Volkow ND, Goldstein RZ (2012) Structural integrity of the prefrontal cortex modulates electrocortical sensitivity to reward. J Cogn Neurosci 24:1560–1570

    Article  PubMed Central  PubMed  Google Scholar 

  • Patterson CM, Newman JP (1993) Reflectivity and learning from aversive events: toward a psychological mechanism for the syndromes of disinhibition. Psychol Rev 100:716–736

    Article  CAS  PubMed  Google Scholar 

  • Patterson CM, Kosson DS, Newman JP (1987) Reaction to punishment, reflectivity, and passive avoidance learning in extraverts. J Pers Soc Psychol 52:565–575

    Article  CAS  PubMed  Google Scholar 

  • Pessoa L (2009) How do emotion and motivation direct executive control? Trends Cogn Sci 13:160–166

    Article  PubMed Central  PubMed  Google Scholar 

  • Petersen SE, Posner MI (2012) The attention system of the human brain: 20 years after. Annu Rev Neurosci 35:73–89

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pickering AD, Gray JA (2001) Dopamine, appetitive reinforcement, and the neuropsychology of human learning: An individual differences approach. In: Eliasz A, Angleitner A (eds) Advances in Research on Temperament. PABST Science Publishers, Lengerich, pp 113–149

    Google Scholar 

  • Ptak R, Schnider A (2010) The dorsal attention network mediates orienting toward behaviorally relevant stimuli in spatial neglect. J Neurosci 30:12557–12565

    Article  CAS  PubMed  Google Scholar 

  • Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. Neuroimage 37:1083–1090 (discussion 1097–9)

    Article  PubMed  Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sambataro F, Blasi G, Fazio L, Caforio G, Taurisano P, Romano R, Di Giorgio A, Gelao B, Lo Bianco L, Papazacharias A et al (2010) Treatment with olanzapine is associated with modulation of the default mode network in patients with Schizophrenia. Neuropsychopharmacology 35:904–912

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schultz W, Tremblay L, Hollerman JR (1998) Reward prediction in primate basal ganglia and frontal cortex. Neuropharmacology 37:421–429

    Article  CAS  PubMed  Google Scholar 

  • Segall JM, Allen EA, Jung RE, Erhardt EB, Arja SK, Kiehl K, Calhoun VD (2012) Correspondence between structure and function in the human brain at rest. Front Neuroinf 6:10

    Article  Google Scholar 

  • Sescousse G, Caldú X, Segura B, Dreher JC (2013) Processing of primary and secondary rewards: a quantitative meta-analysis and review of human functional neuroimaging studies. Neurosci Biobehav Rev 37:681–696

    Article  PubMed  Google Scholar 

  • Small DM, Gitelman D, Simmons K, Bloise SM, Parrish T, Mesulam MM (2005) Monetary incentives enhance processing in brain regions mediating top-down control of attention. Cereb Cortex 15:1855–1865

    Article  PubMed  Google Scholar 

  • Spitzer H, Desimone R, Moran J (1988) Increased attention enhances both behavioral and neuronal performance. Science 240:338–340

    Article  CAS  PubMed  Google Scholar 

  • Spreng RN (2012) The fallacy of a “task-negative” network. Front Psychol 3:145

    Article  PubMed Central  PubMed  Google Scholar 

  • Spreng RN, Stevens WD, Chamberlain JP, Gilmore AW, Schacter DL (2010) Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. Neuroimage 53:303–317

    Article  PubMed Central  PubMed  Google Scholar 

  • Stalnaker TA, Calhoon GG, Ogawa M, Roesch MR, Schoenbaum G (2012) Reward prediction error signaling in posterior dorsomedial striatum is action specific. J Neurosci 32:10296–10305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tan HY, Chen Q, Goldberg TE, Mattay VS, Meyer-Lindenberg A, Weinberger DR, Callicott JH (2007) Catechol-O-methyltransferase Val158Met modulation of prefrontal-parietal-striatal brain systems during arithmetic and temporal transformations in working memory. J Neurosci 27:13393–13401

    Article  CAS  PubMed  Google Scholar 

  • Tomasi D, Volkow ND, Wang GJ, Wang R, Telang F, Caparelli EC, Wong C, Jayne M, Fowler JS (2011) Methylphenidate enhances brain activation and deactivation responses to visual attention and working memory tasks in healthy controls. Neuroimage 54:3101–3110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Torrubia R, Avila C, Molto J, Caseras X (2001) The sensitivity to punishment and sensitivity to reward questionnaire (SPSRQ) as a measure of Gray’s anxiety and impulsivity dimensions. Pers Individ Dif 31:837–862

    Article  Google Scholar 

  • Van den Heuvel OA, Groenewegen HJ, Barkhof F, Lazeron RHC, Van Dyck R, Veltman DJ (2003) Frontostriatal system in planning complexity: a parametric functional magnetic resonance version of Tower of London task. Neuroimage 18:367–374

    Article  PubMed  Google Scholar 

  • Van Lankveld JJDM, Smulders FTY (2008) The effect of visual sexual content on the event-related potential. Biol Psychol 79:200–208

    Article  PubMed  Google Scholar 

  • Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL (2008) Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J Neurophysiol 100:3328–3342

    Article  PubMed Central  PubMed  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Tomasi D, Telang F (2011) Addiction: beyond dopamine reward circuitry. Proc Natl Acad Sci USA 108:15037–15042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wager TD, Jonides J, Reading S (2004) Neuroimaging studies of shifting attention: a meta-analysis. Neuroimage 22:1679–1693

    Article  PubMed  Google Scholar 

  • Wightman RM, Robinson DL (2002) Transient changes in mesolimbic dopamine and their association with “reward”. J Neurochem 82:721–735

    Article  CAS  PubMed  Google Scholar 

  • Williams-Gray CH, Hampshire A, Robbins TW, Owen AM, Barker RA (2007) Catechol O-methyltransferase Val158Met genotype influences frontoparietal activity during planning in patients with Parkinson’s disease. J Neurosci 27:4832–4838

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Potenza MN, Calhoun VD (2013) Spatial ICA reveals functional activity hidden from traditional fMRI GLM-based analyses. Front Neurosci 7:154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ye Z, Doñamayor N, Münte TF (2014) Brain network of semantic integration in sentence reading: Insights from independent component analysis and graph theoretical analysis. Hum Brain Mapp 35:367–376

    Google Scholar 

  • Yeung N, Sanfey AG (2004) Independent coding of reward magnitude and valence in the human brain. J Neurosci 24:6258–6264

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Brainglot project of the CONSOLIDER-INGENIO 2010 Programme (CSD2007-00012). Also, the project was supported by grants PSI2010-20168 from MINECO, P1·1B2011-09 from Universitat Jaume I to CA, and Grants 040/2011 from Spanish National Drug Strategy Ministerio de Sanidad y Consumo, GV/2012/042 from the GeneralitatValenciana and PSI2012-33054 from Ministerio de Economía y Competitividad to ABL.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Costumero.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 679 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costumero, V., Barrós-Loscertales, A., Bustamante, J.C. et al. A new window to understanding individual differences in reward sensitivity from attentional networks. Brain Struct Funct 220, 1807–1821 (2015). https://doi.org/10.1007/s00429-014-0760-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0760-6

Keywords

Navigation