Skip to main content

Advertisement

Log in

Molecular composition of extracellular matrix in the vestibular nuclei of the rat

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Previous studies have demonstrated that the molecular and structural composition of the extracellular matrix (ECM) shows regional differences in the central nervous system. By using histochemical and immunohistochemical methods, we provide here a detailed map of the distribution of ECM molecules in the vestibular nuclear complex (VNC) of the rat. We have observed common characteristics of the ECM staining pattern in the VNC and a number of differences among the individual vestibular nuclei and their subdivisions. The perineuronal net (PNN), which is the pericellular condensation of ECM, showed the most intense staining for hyaluronan, aggrecan, brevican and tenascin-R in the superior, lateral and medial vestibular nuclei, whereas the HAPLN1 link protein and the neurocan exhibited moderate staining intensity. The rostral part of the descending vestibular nucleus (DVN) presented a similar staining pattern in the PNN, with the exception of brevican, which was negative. The caudal part of the DVN had the weakest staining for all ECM molecules in the PNN. Throughout the VNC, versican staining in the PNN, when present, was distinctive due to its punctuate appearance. The neuropil also exhibited heterogeneity among the individual vestibular nuclei in ECM staining pattern and intensity. We find that the heterogeneous distribution of ECM molecules is associated in many cases with the variable cytoarchitecture and hodological organization of the vestibular nuclei, and propose that differences in the ECM composition may be related to specific neuronal functions associated with gaze and posture control and vestibular compensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

CNS:

Central nervous system

CSPG:

Chondroitin sulfate proteoglycan

DVN:

Descending vestibular nucleus

ECM:

Extracellular matrix

GAG:

Glycosaminoglycan

GP:

Glycoprotein

HA:

Hyaluronan

HAPLN1:

Hyaluronan and proteoglycan link protein 1

LVN:

Lateral vestibular nucleus

NGS:

Normal goat serum

NHS:

Normal horse serum

NRS:

Normal rabbit serum

MVN:

Medial vestibular nucleus

PG:

Proteoglycan

PNN:

Perineuronal net

SVN:

Superior vestibular nucleus

TN-R:

Tenascin-R

VNC:

Vestibular nuclear complex

WFA:

Wisteria floribunda agglutinin

References

  • Afshari FT, Kwok JC, White L, Fawcett JW (2010) Schwann cell migration is integrin-dependent and inhibited by astrocyte-produced aggrecan. Glia 58(7):857-869

    Google Scholar 

  • Ajmo JM, Eakin AK, Hamel MG, Gottschall PE (2008) Discordant localization of WFA reactivity and brevican/ADAMTS-derived fragment in rodent brain. BMC Neurosci 9:14

    PubMed Central  PubMed  Google Scholar 

  • Asher RA, Morgenstern DA, Fidler PS, Adcock KH, Oohira A, Braistead JE, Levine JM, Margolis RU, Rogers JH, Fawcett JW (2000) Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. J Neurosci 20(7):2427-2438

    Google Scholar 

  • Asher RA, Morgenstern DA, Shearer MC, Adcock KH, Pesheva P, Fawcett JW (2002) Versican is upregulated in CNS injury and is a product of oligodendrocyte lineage cells. J Neurosci 22(6):2225–2236

    Google Scholar 

  • Babalian AL, Vidal PP (2000) Floccular modulation of vestibuloocular pathways and cerebellum-related plasticity: an in vitro whole brain study. J Neurophysiol 84(5):2514–2528

    CAS  PubMed  Google Scholar 

  • Babalian A, Vibert N, Assie G, Serafin M, Muhlethaler M, Vidal PP (1997) Central vestibular networks in the guinea-pig: functional characterization in the isolated whole brain in vitro. Neuroscience 81(2):405–426

    CAS  PubMed  Google Scholar 

  • Bacskai T, Szekely G, Matesz C (2002) Ascending and descending projections of the lateral vestibular nucleus in the rat. Acta Biol Hung 53(1–2):7–21

    PubMed  Google Scholar 

  • Bagnall MW, Stevens RJ, du Lac S (2007) Transgenic mouse lines subdivide medial vestibular nucleus neurons into discrete, neurochemically distinct populations. J Neurosci 27(9):2318–2330

    CAS  PubMed  Google Scholar 

  • Balaban CD (1996) Vestibular nucleus projections to the parabrachial nucleus in rabbits: implications for vestibular influences on the autonomic nervous system. Exp Brain Res 108(3):367–381

    CAS  PubMed  Google Scholar 

  • Bekku Y, Rauch U, Ninomiya Y, Oohashi T (2009) Brevican distinctively assembles extracellular components at the large diameter nodes of Ranvier in the CNS. J Neurochem 108(5):1266–1276

    CAS  PubMed  Google Scholar 

  • Bekku Y, Vargova L, Goto Y, Vorisek I, Dmytrenko L, Narasaki M, Ohtsuka A, Fassler R, Ninomiya Y, Sykova E, Oohashi T (2010) Bral1: its role in diffusion barrier formation and conduction velocity in the CNS. J Neurosci 30(8):3113–3123

    CAS  PubMed  Google Scholar 

  • Bertolotto A, Manzardo E, Guglielmone R (1996) Immunohistochemical mapping of perineuronal nets containing chondroitin unsulfated proteoglycan in the rat central nervous system. Cell Tissue Res 283(2):283–295

    CAS  PubMed  Google Scholar 

  • Bignami A, Hosley M, Dahl D (1993) Hyaluronic acid and hyaluronic acid-binding proteins in brain extracellular matrix. Anat Embryol (Berl) 188(5):419–433

    CAS  Google Scholar 

  • Birinyi A, Straka H, Matesz C, Dieringer N (2001) Location of dye-coupled second order and of efferent vestibular neurons labeled from individual semicircular canal or otolith organs in the frog. Brain Res 921(1–2):44–59

    CAS  PubMed  Google Scholar 

  • Blosa M, Sonntag M, Bruckner G, Jager C, Seeger G, Matthews RT, Rubsamen R, Arendt T, Morawski M (2013) Unique features of extracellular matrix in the mouse medial nucleus of trapezoid body—implications for physiological functions. Neuroscience 228:215–234

    CAS  PubMed  Google Scholar 

  • Brodal P, Brodal A (1981) The olivocerebellar projection in the monkey. Experimental studies with the method of retrograde tracing of horseradish peroxidase. J Comp Neurol 201(3):375–393

    CAS  PubMed  Google Scholar 

  • Brown JE, Card JP, Yates BJ (2005) Polysynaptic pathways from the vestibular nuclei to the lateral mammillary nucleus of the rat: substrates for vestibular input to head direction cells. Exp Brain Res 161(1):47–61

    CAS  PubMed  Google Scholar 

  • Bruckner G, Grosche J, Schmidt S, Hartig W, Margolis RU, Delpech B, Seidenbecher CI, Czaniera R, Schachner M (2000) Postnatal development of perineuronal nets in wild-type mice and in a mutant deficient in tenascin-R. J Comp Neurol 428(4):616–629

    CAS  PubMed  Google Scholar 

  • Bruckner G, Morawski M, Arendt T (2008) Aggrecan-based extracellular matrix is an integral part of the human basal ganglia circuit. Neuroscience 151(2):489–504

    CAS  PubMed  Google Scholar 

  • Camp AJ, Callister RJ, Brichta AM (2006) Inhibitory synaptic transmission differs in mouse type A and B medial vestibular nucleus neurons in vitro. J Neurophysiol 95(5):3208–3218

    CAS  PubMed  Google Scholar 

  • Carulli D, Rhodes KE, Brown DJ, Bonnert TP, Pollack SJ, Oliver K, Strata P, Fawcett JW (2006) Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components. J Comp Neurol 494(4):559–577

    CAS  PubMed  Google Scholar 

  • Carulli D, Rhodes KE, Fawcett JW (2007) Upregulation of aggrecan, link protein 1, and hyaluronan synthases during formation of perineuronal nets in the rat cerebellum. J Comp Neurol 501(1):83–94

    CAS  PubMed  Google Scholar 

  • Carulli D, Pizzorusso T, Kwok JC, Putignano E, Poli A, Forostyak S, Andrews MR, Deepa SS, Glant TT, Fawcett JW (2010) Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain 133(Pt 8):2331–2347

    PubMed  Google Scholar 

  • Celio MR, Spreafico R, De Biasi S, Vitellaro-Zuccarello L (1998) Perineuronal nets: past and present. Trends Neurosci 21(12):510–515

    CAS  PubMed  Google Scholar 

  • Costa C, Tortosa R, Domenech A, Vidal E, Pumarola M, Bassols A (2007) Mapping of aggrecan, hyaluronic acid, heparan sulphate proteoglycans and aquaporin 4 in the central nervous system of the mouse. J Chem Neuroanat 33(3):111–123

    CAS  PubMed  Google Scholar 

  • Deak A, Bacskai T, Gaal B, Racz E, Matesz K (2012) Effect of unilateral labyrinthectomy on the molecular composition of perineuronal nets in the lateral vestibular nucleus of the rat. Neurosci Lett 513(1):1–5

    CAS  PubMed  Google Scholar 

  • Deepa SS, Carulli D, Galtrey C, Rhodes K, Fukuda J, Mikami T, Sugahara K, Fawcett JW (2006) Composition of perineuronal net extracellular matrix in rat brain: a different disaccharide composition for the net-associated proteoglycans. J Biol Chem 281(26):17789–17800

    CAS  PubMed  Google Scholar 

  • Delpech B, Delpech A, Bruckner G, Girard N, Maingonnat C (1989) Hyaluronan and hyaluronectin in the nervous system. Ciba Found Symp 143:208–220

    CAS  PubMed  Google Scholar 

  • Díaz C, Glover JC, Puelles L, Bjaalie JG (2003) The relationship between hodological and cytoarchitectonic organization in the vestibular complex of the 11-day chicken embryo. J Comp Neurol 457(1):87-105

    Google Scholar 

  • Dityatev A, Fellin T (2008) Extracellular matrix in plasticity and epileptogenesis. Neuron Glia Biol 4(3):235–247

    PubMed  Google Scholar 

  • Dityatev A, Rusakov DA (2010) Molecular signals of plasticity at the tetrapartite synapse. Curr Opin Neurobiol 21(2):353–359

    Google Scholar 

  • Dityatev A, Schachner M (2003) Extracellular matrix molecules and synaptic plasticity. Nat Rev Neurosci 4(6):456–468

    CAS  PubMed  Google Scholar 

  • Dityatev A, Schachner M (2006) The extracellular matrix and synapses. Cell Tissue Res 326(2):647–654

    CAS  PubMed  Google Scholar 

  • du Lac S, Lisberger SG (1995) Membrane and firing properties of avian medial vestibular nucleus neurons in vitro. J Comp Physiol A 176(5):641–651

    PubMed  Google Scholar 

  • Eggli PS, Lucocq J, Ott P, Graber W, van der Zypen E (1992) Ultrastructural localization of hyaluronan in myelin sheaths of the rat central and rat and human peripheral nervous systems using hyaluronan-binding protein-gold and link protein-gold. Neuroscience 48(3):737–744

    CAS  PubMed  Google Scholar 

  • Eugene D, Idoux E, Beraneck M, Moore LE, Vidal PP (2011) Intrinsic membrane properties of central vestibular neurons in rodents. Exp Brain Res 210(3–4):423–436

    PubMed  Google Scholar 

  • Frischknecht R, Seidenbecher CI (2012) Brevican: a key proteoglycan in the perisynaptic extracellular matrix of the brain. Int J Biochem Cell Biol 44(7):1051–1054

    CAS  PubMed  Google Scholar 

  • Frischknecht R, Heine M, Perrais D, Seidenbecher CI, Choquet D, Gundelfinger ED (2009) Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. Nat Neurosci 12(7):897–904

    CAS  PubMed  Google Scholar 

  • Gacek RR (1969) The course and central termination of first order neurons supplying vestibular endorgans in the cat. Acta Otolaryngol Suppl 254:1–66

    CAS  PubMed  Google Scholar 

  • Gati G, Morawski M, Lendvai D, Jager C, Negyessy L, Arendt T, Alpar A (2010) Distribution and classification of aggrecan-based extracellular matrix in the thalamus of the rat. J Neurosci Res 88(15):3257–3266

    CAS  PubMed  Google Scholar 

  • Giamanco KA, Morawski M, Matthews RT (2010) Perineuronal net formation and structure in aggrecan knockout mice. Neuroscience 170(4):1314–1327

    CAS  PubMed  Google Scholar 

  • Gong Q, Bailey MS, Pixley SK, Ennis M, Liu W, Shipley MT (1994) Localization and regulation of low affinity nerve growth factor receptor expression in the rat olfactory system during development and regeneration. J Comp Neurol 344(3):336–348

    CAS  PubMed  Google Scholar 

  • Hagihara K, Miura R, Kosaki R, Berglund E, Ranscht B, Yamaguchi Y (1999) Immunohistochemical evidence for the brevican-tenascin-R interaction: colocalization in perineuronal nets suggests a physiological role for the interaction in the adult rat brain. J Comp Neurol 410(2):256–264

    CAS  PubMed  Google Scholar 

  • Hartig W, Brauer K, Bruckner G (1992) Wisteria floribunda agglutinin-labelled nets surround parvalbumin-containing neurons. NeuroReport 3(10):869–872

    CAS  PubMed  Google Scholar 

  • Hartig W, Derouiche A, Welt K, Brauer K, Grosche J, Mader M, Reichenbach A, Bruckner G (1999) Cortical neurons immunoreactive for the potassium channel Kv3.1b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations. Brain Res 842(1):15–29

    CAS  PubMed  Google Scholar 

  • Hartig W, Singer A, Grosche J, Brauer K, Ottersen OP, Bruckner G (2001) Perineuronal nets in the rat medial nucleus of the trapezoid body surround neurons immunoreactive for various amino acids, calcium-binding proteins and the potassium channel subunit Kv3.1b. Brain Res 899(1–2):123–133

    CAS  PubMed  Google Scholar 

  • Highstein SM (1971) Organization of the inhibitory and excitatory vestibulo-ocular reflex pathways to the third and fourth nuclei in rabbit. Brain Res 32(1):218–224

    CAS  PubMed  Google Scholar 

  • Hilbig H, Nowack S, Boeckler K, Bidmon HJ, Zilles K (2007) Characterization of neuronal subsets surrounded by perineuronal nets in the rhesus auditory brainstem. J Anat 210(5):507–517

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holstein GR, Friedrich VL Jr, Kang T, Kukielka E, Martinelli GP (2011) Direct projections from the caudal vestibular nuclei to the ventrolateral medulla in the rat. Neuroscience 175:104–117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ito M, Highstein SM, Tsuchiya T (1970) The postsynaptic inhibition of rabbit oculomotor neurones by secondary vestibular impulses and its blockage by picrotoxin. Brain Res 17(3):520–523

    CAS  PubMed  Google Scholar 

  • Jian BJ, Acernese AW, Lorenzo J, Card JP (1044) Yates BJ (2005) Afferent pathways to the region of the vestibular nuclei that participates in cardiovascular and respiratory control. Brain Res 2:241–250

    Google Scholar 

  • Johnston AR, MacLeod NK, Dutia MB (1994) Ionic conductances contributing to spike repolarization and after-potentials in rat medial vestibular nucleus neurones. J Physiol 481(Pt 1):61–77

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kerman IA, Shabrang C, Taylor L, Akil H, Watson SJ (2006) Relationship of presympathetic-premotor neurons to the serotonergic transmitter system in the rat brainstem. J Comp Neurol 499(6):882–896

    CAS  PubMed  Google Scholar 

  • Kodama T, Guerrero S, Shin M, Moghadam S, Faulstich M, du Lac S (2012) Neuronal classification and marker gene identification via single-cell expression profiling of brainstem vestibular neurons subserving cerebellar learning. J Neurosci 32(23):7819–7831

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kolkman KE, Moghadam SH, du Lac S (2011) Intrinsic physiology of identified neurons in the prepositus hypoglossi and medial vestibular nuclei. J Vestib Res 21(1):33–47

    PubMed Central  PubMed  Google Scholar 

  • Koppe G, Bruckner G, Brauer K, Hartig W, Bigl V (1997) Developmental patterns of proteoglycan-containing extracellular matrix in perineuronal nets and neuropil of the postnatal rat brain. Cell Tissue Res 288(1):33–41

    CAS  PubMed  Google Scholar 

  • Kwok JC, Carulli D, Fawcett JW (2010) In vitro modeling of perineuronal nets: hyaluronan synthase and link protein are necessary for their formation and integrity. J Neurochem 114(5):1447–1459

    CAS  PubMed  Google Scholar 

  • Ladpli R, Brodal A (1968) Experimental studies of commissural and reticular formation projections from the vestibular nuclei in the cat. Brain Res 8(1):65–96

    CAS  PubMed  Google Scholar 

  • Lendvai D, Morawski M, Bruckner G, Negyessy L, Baksa G, Glasz T, Patonay L, Matthews RT, Arendt T, Alpar A (2012) Perisynaptic aggrecan-based extracellular matrix coats in the human lateral geniculate body devoid of perineuronal nets. J Neurosci Res 90(2):376–387

    CAS  PubMed  Google Scholar 

  • Lendvai D, Morawski M, Négyessy L, Gáti G, Jäger C, Baksa G, Glasz T, Attems J, Tanila H, Arendt T, Harkany T, Alpár A (2013) Neurochemical mapping of the human hippocampus reveals perisynaptic matrix around functional synapses in Alzheimer’s disease. Acta Neuropathol 125(2):215–229

    CAS  PubMed  Google Scholar 

  • Margolis RK, Margolis RU, Preti C, Lai D (1975) Distribution and metabolism of glycoproteins and glycosaminoglycans in subcellular fractions of brain. Biochemistry 14(22):4797–4804

    CAS  PubMed  Google Scholar 

  • Matesz C (1988) Fine structure of the primary afferent vestibulocochlear terminals in the frog. Acta Biol Hung 39(2–3):267–277

    CAS  PubMed  Google Scholar 

  • Matesz C, Nagy E, Kulik A, Tonkol A (1997) Projections of the medial and superior vestibular nuclei to the brainstem and spinal cord in the rat. Neurobiology (Bp) 5(4):489–493

    CAS  Google Scholar 

  • Matesz C, Modis L, Halasi G, Szigeti ZM, Felszeghy S, Bacskai T, Szekely G (2005) Extracellular matrix molecules and their possible roles in the regeneration of frog nervous system. Brain Res Bull 66(4–6):526–531

    CAS  PubMed  Google Scholar 

  • McCall AA, Yates BJ (2011) Compensation following bilateral vestibular damage. Front Neurol 2:88

    PubMed Central  PubMed  Google Scholar 

  • McCrea RA, Strassman A, Highstein SM (1987a) Anatomical and physiological characteristics of vestibular neurons mediating the vertical vestibulo-ocular reflexes of the squirrel monkey. J Comp Neurol 264(4):571–594

    CAS  PubMed  Google Scholar 

  • McCrea RA, Strassman A, May E, Highstein SM (1987b) Anatomical and physiological characteristics of vestibular neurons mediating the horizontal vestibulo-ocular reflex of the squirrel monkey. J Comp Neurol 264(4):547–570

    CAS  PubMed  Google Scholar 

  • Meszar Z, Felszeghy S, Veress G, Matesz K, Szekely G, Modis L (2008) Hyaluronan accumulates around differentiating neurons in spinal cord of chicken embryos. Brain Res Bull 75(2–4):414–418

    CAS  PubMed  Google Scholar 

  • Midura RJ, Su X, Morcuende JA, Tammi M, Tammi R (2003) Parathyroid hormone rapidly stimulates hyaluronan synthesis by periosteal osteoblasts in the tibial diaphysis of the growing rat. J Biol Chem 278(51):51462-51468

    Google Scholar 

  • Milev P, Maurel P, Chiba A, Mevissen M, Popp S, Yamaguchi Y, Margolis RK, Margolis RU (1998) Differential regulation of expression of hyaluronan-binding proteoglycans in developing brain: aggrecan, versican, neurocan, and brevican. Biochem Biophys Res Commun 247(2):207–212

    CAS  PubMed  Google Scholar 

  • Mitsacos A, Reisine H, Highstein SM (1983a) The superior vestibular nucleus: an intracellular HRP study in the cat. I. Vestibulo-ocular neurons. J Comp Neurol 215(1):78–91

    CAS  PubMed  Google Scholar 

  • Mitsacos A, Reisine H, Highstein SM (1983b) The superior vestibular nucleus: an intracellular HRP study in the cat. II. Non-vestibulo-ocular neurons. J Comp Neurol 215(1):92–107

    CAS  PubMed  Google Scholar 

  • Morawski M, Bruckner G, Jager C, Seeger G, Kunzle H, Arendt T (2010) Aggrecan-based extracellular matrix shows unique cortical features and conserved subcortical principles of mammalian brain organization in the Madagascan lesser hedgehog tenrec (Echinops telfairi Martin. Neuroscience 165(3):831–849

    CAS  PubMed  Google Scholar 

  • Morawski M, Bruckner G, Jager C, Seeger G, Matthews RT, Arendt T (2012) Involvement of perineuronal and perisynaptic extracellular matrix in Alzheimer’s disease neuropathology. Brain Pathol 22(4):547–561

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morita S, Oohira A, Miyata S (2010) Activity-dependent remodeling of chondroitin sulfate proteoglycans extracellular matrix in the hypothalamo-neurohypophysial system. Neuroscience 166(4):1068–1082

    CAS  PubMed  Google Scholar 

  • Oohashi T, Hirakawa S, Bekku Y, Rauch U, Zimmermann DR, Su WD, Ohtsuka A, Murakami T, Ninomiya Y (2002) Bral1, a brain-specific link protein, colocalizing with the versican V2 isoform at the nodes of Ranvier in developing and adult mouse central nervous systems. Mol Cell Neurosci 19(1):43–57

    CAS  PubMed  Google Scholar 

  • Pasqualetti M, Díaz C, Renaud JS, Rijli FM, Glover JC (2007) Fate-mapping the mammalian hindbrain: segmental origins of vestibular projection neurons assessed using rhombomere-specific Hoxa2 enhancer elements in the mouse embryo. J Neurosci 27(36):9670–9681

    CAS  PubMed  Google Scholar 

  • Paxinos G, Watson Ch (1998) The rat brain—in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Pesheva P, Probstmeier R (2000) The yin and yang of tenascin-R in CNS development and pathology. Prog Neurobiol 61(5):465–493

    CAS  PubMed  Google Scholar 

  • Peusner KD, Lindberg NH, Mansfield PF (1988) Ultrastructural study of calycine synaptic endings of colossal vestibular fibers in the cristae ampullares of the developing chick. Int J Dev Neurosci 6(3):267–283

    CAS  PubMed  Google Scholar 

  • Pompeiano O, Brodal A (1957) Spinovestibular fibers in the cat; an experimental study. J Comp Neurol 108(3):353–381

    CAS  PubMed  Google Scholar 

  • Porter JD, Balaban CD (1997) Connections between the vestibular nuclei and brain stem regions that mediate autonomic function in the rat. J Vestib Res 7(1):63–76

    CAS  PubMed  Google Scholar 

  • Ruggiero DA, Mtui EP, Otake K, Anwar M (1996) Vestibular afferents to the dorsal vagal complex: substrate for vestibular-autonomic interactions in the rat. Brain Res 743(1–2):294–302

    CAS  PubMed  Google Scholar 

  • Ruigrok TJH, Voogd J (1990) Cerebellar nucleo-olivary projections in the rat: an anterograde tracing study with Phaseolus vulgaris leucoagglutinin (PHA-L). J Comp Neurol 298:315–333

    CAS  PubMed  Google Scholar 

  • Saito Y, Takazawa T, Ozawa S (2008) Relationship between afterhyperpolarization profiles and the regularity of spontaneous firings in rat medial vestibular nucleus neurons. Eur J Neurosci 28(2):288–298

    PubMed  Google Scholar 

  • Schmalfeldt M, Bandtlow CE, Dours-Zimmermann MT, Winterhalter KH, Zimmermann DR (2000) Brain derived versican V2 is a potent inhibitor of axonal growth. J Cell Sci 113(Pt 5):807–816

    CAS  PubMed  Google Scholar 

  • Sekirnjak C, du Lac S (2006) Physiological and anatomical properties of mouse medial vestibular nucleus neurons projecting to the oculomotor nucleus. J Neurophysiol 95(5):3012–3023

    PubMed  Google Scholar 

  • Sekirnjak C, Vissel B, Bollinger J, Faulstich M, du Lac S (2003) Purkinje cell synapses target physiologically unique brainstem neurons. J Neurosci 23(15):6392–6398

    CAS  PubMed  Google Scholar 

  • Serafin M, de Waele C, Khateb A, Vidal PP, Muhlethaler M (1991) Medial vestibular nucleus in the guinea-pig. I. Intrinsic membrane properties in brainstem slices. Exp Brain Res 84(2):417–425

    CAS  PubMed  Google Scholar 

  • Shin BS, Oh SY, Kim JS, Kim TW, Seo MW, Lee H, Park YA (2011) Cervical and ocular vestibular-evoked myogenic potentials in acute vestibular neuritis. Clin Neurophysiol 123(2):369–375

    PubMed  Google Scholar 

  • Shinder ME, Taube JS (2010) Differentiating ascending vestibular pathways to the cortex involved in spatial cognition. J Vestib Res 20(1):3–23

    PubMed  Google Scholar 

  • Shiroyama T, Kayahara T, Yasui Y, Nomura J, Nakano K (1999) Projections of the vestibular nuclei to the thalamus in the rat: a Phaseolus vulgaris leucoagglutinin study. J Comp Neurol 407(3):318–332

    CAS  PubMed  Google Scholar 

  • Sotelo C, Palay SL (1970) The fine structure of the later vestibular nucleus in the rat. II. Synaptic organization. Brain Res 18(1):93–115

    CAS  PubMed  Google Scholar 

  • Stein BM, Carpenter MB (1967) Central projections of portions of vestibular ganglia innervating specific parts of the labyrinth in the rhesus monkey. Am J Anat 120:281–318

    Google Scholar 

  • Straka H, Vibert N, Vidal PP, Moore LE, Dutia MB (2005) Intrinsic membrane properties of vertebrate vestibular neurons: function, development and plasticity. Prog Neurobiol 76(6):349–392

    CAS  PubMed  Google Scholar 

  • Suarez C, Gonzalez del Rey C, Tolivia J, Llorente JL, Diaz C, Navarro A, Gomez J (1993) Morphometric analysis of the vestibular complex in the rat. Laryngoscope 103(7):762–773

    CAS  PubMed  Google Scholar 

  • Sykova E, Nicholson C (2008) Diffusion in brain extracellular space. Physiol Rev 88(4):1277–1340

    CAS  PubMed Central  PubMed  Google Scholar 

  • Szigeti ZM, Matesz C, Szekely G, Felszeghy S, Bacskai T, Halasi G, Meszar Z, Modis L (2006) Distribution of hyaluronan in the central nervous system of the frog. J Comp Neurol 496(6):819–831

    CAS  PubMed  Google Scholar 

  • Takazawa T, Saito Y, Tsuzuki K, Ozawa S (2004) Membrane and firing properties of glutamatergic and GABAergic neurons in the rat medial vestibular nucleus. J Neurophysiol 92(5):3106–3120

    CAS  PubMed  Google Scholar 

  • Uno A, Idoux E, Beraneck M, Vidal PP, Moore LE, Wilson VJ, Vibert N (2003) Static and dynamic membrane properties of lateral vestibular nucleus neurons in guinea pig brain stem slices. J Neurophysiol 90(3):1689–1703

    CAS  PubMed  Google Scholar 

  • Vitellaro-Zuccarello L, Bosisio P, Mazzetti S, Monti C, De Biasi S (2007) Differential expression of several molecules of the extracellular matrix in functionally and developmentally distinct regions of rat spinal cord. Cell Tissue Res 327(3):433–447

    CAS  PubMed  Google Scholar 

  • Voogd J (1964) The cerebellum of the cat. Structure and fiber connections. Thesis, Van Gorcum, Assen

  • Voogd J, Epema AH, Rubertone JA (1991) Cerebello-vestibular connections of the anterior vermis. A retrograde tracer study in different mammals including primates. Arch Ital Biol 129(1):3–19

    CAS  PubMed  Google Scholar 

  • Voustianiouk A, Kaufmann H, Diedrich A, Raphan T, Biaggioni I, Macdougall H, Ogorodnikov D, Cohen B (2006) Electrical activation of the human vestibulo-sympathetic reflex. Exp Brain Res 171(2):251–261

    PubMed  Google Scholar 

  • Wang D, Fawcett J (2012) The perineuronal net and the control of CNS plasticity. Cell Tissue Res 349(1):147–160

    PubMed  Google Scholar 

  • Wegner F, Hartig W, Bringmann A, Grosche J, Wohlfarth K, Zuschratter W, Bruckner G (2003) Diffuse perineuronal nets and modified pyramidal cells immunoreactive for glutamate and the GABA(A) receptor alpha1 subunit form a unique entity in rat cerebral cortex. Exp Neurol 184(2):705–714

    CAS  PubMed  Google Scholar 

  • Yamada H, Fredette B, Shitara K, Hagihara K, Miura R, Ranscht B, Stallcup WB, Yamaguchi Y (1997) The brain chondroitin sulfate proteoglycan brevican associates with astrocytes ensheathing cerebellar glomeruli and inhibits neurite outgrowth from granule neurons. J Neurosci 17(20):7784-7795

    Google Scholar 

  • Yamaguchi Y (1996) Brevican: a major proteoglycan in adult brain. Perspect Dev Neurobiol 3(4):307–317

    CAS  PubMed  Google Scholar 

  • Yasuhara O, Akiyama H, McGeer EG, McGeer PL (1994) Immunohistochemical localization of hyaluronic acid in rat and human brain. Brain Res 635(1–2):269–282

    CAS  PubMed  Google Scholar 

  • Yates BJ, Balaban CD, Miller AD, Endo K, Yamaguchi Y (1995) Vestibular inputs to the lateral tegmental field of the cat: potential role in autonomic control. Brain Res 689(2):197–206

    CAS  PubMed  Google Scholar 

  • Zimmermann DR, Dours-Zimmermann MT (2008) Extracellular matrix of the central nervous system: from neglect to challenge. Histochem Cell Biol 130(4):635–653

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Timea Horvath for skillful technical assistance. Grant sponsor: MTA-TKI 255, DE OEC Bridging Fund and TÁMOP-4.2.2/B-10/1-2010-0024.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara Matesz.

Additional information

É. Rácz and B. Gaál contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rácz, É., Gaál, B., Kecskes, S. et al. Molecular composition of extracellular matrix in the vestibular nuclei of the rat. Brain Struct Funct 219, 1385–1403 (2014). https://doi.org/10.1007/s00429-013-0575-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0575-x

Keywords

Navigation