Skip to main content
Log in

Perinatal and early postnatal reorganization of the subplate and related cellular compartments in the human cerebral wall as revealed by histological and MRI approaches

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

We analyzed the developmental history of the subplate and related cellular compartments of the prenatal and early postnatal human cerebrum by combining postmortem histological analysis with in vivo MRI. Histological analysis was performed on 21 postmortem brains (age range: 26 postconceptional weeks to 6.5 years) using Nissl staining, AChE-histochemistry, PAS–Alcian blue histochemistry, Gallyas’ silver impregnation, and immunocytochemistry for MAP2, synaptophysin, neurofilament, chondroitin sulfate, fibronectin, and myelin basic protein. The histological findings were correlated with in vivo MRI findings obtained in 30 age-matched fetuses, infants, and children. We analyzed developmental reorganization of major cellular (cell bodies, growing axons) and extracellular (extracellular matrix) components of the subplate and the developing cortex/white matter interface. We found that perinatal and postnatal reorganization of these tissue components is protracted (extending into the second year of life) and characterized by well-delineated, transient and previously undescribed structural and molecular changes at the cortex/white matter interface. The findings of this study are clinically relevant because they may inform and guide a proper interpretation of highly dynamic and hitherto puzzling changes of cortical thickness and cortical/white matter interface as described in current in vivo MRI studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Allendoerfer KL, Shatz CJ (1994) The subplate, a transient neocortical structure—its role in the development of connections between thalamus and cortex. Annu Rev Neurosci 17:185–218

    CAS  PubMed  Google Scholar 

  • Ang ESBC, Haydar TF, Gluncic V, Rakic P (2003) Four-dimensional migratory coordinates of GABAergic interneurons in the developing mouse cortex. J Neurosci 23:5805–5815

    CAS  PubMed  Google Scholar 

  • Arnold F (1838) Untersuchungen im Gebiete der Anatomie und Physiologie mit besonderer Hinsicht auf seine anatomischen Tafeln. Erstes Bändchen. Bemerkungen über den Bau des Hirns und Rückenmarks nebst Beiträgen zur Physiologie des zehnten und eilften Hirnnerven, mehrern kritischen Mittheilungen so wie verschiedenen pathologischen und anatomischen Beobachtungen. Verlag von S. Höhr, Zürich

  • Ayoub AE, Kostovic I (2009) New horizons for the subplate zone and its pioneering neurons. Cereb Cortex 19:1705–1707

    PubMed  Google Scholar 

  • Bayatti N, Moss JA, Sun L, Ambrose P, Ward JFH, Lindsay S, Clowry GJ (2008) A molecular neuroanatomical study of the developing human neocortex from 8 to 17 postconceptional weeks revealing the early differentiation of the subplate and subventricular zone. Cereb Cortex 18:1536–1548

    PubMed  Google Scholar 

  • Bicknese AR, Sheppard AM, Oleary DDM, Pearlman AL (1994) Thalamocortical axons extend along a chondroitin sulfate proteoglycan-enriched pathway coincident with the neocortical subplate and distinct from the efferent path. J Neurosci 14:3500–3510

    CAS  PubMed  Google Scholar 

  • Brodmann K (1914) Physiologie des Gehirns. Die anatomische Feldertopographie der Grosshirnoberflache. In: Krause F (ed) Die Allgemeine Chirurgie der Gehirnkrankheiten. Ferdinand Enke, Stuttgart, pp 99–112

    Google Scholar 

  • Burkhalter A, Bernardo KL, Charles V (1993) Development of local circuits in human visual-cortex. J Neurosci 13:1916–1931

    CAS  PubMed  Google Scholar 

  • Bystron I, Blakemore C, Rakic P (2008) Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci 9:110–122

    CAS  PubMed  Google Scholar 

  • Chen CH, Gutierrez ED, Thompson W, Panizzon MS, Jernigan TL, Eyler LT, Fennema-Notestine C, Jak AJ, Neale MC, Franz CE, Lyons MJ, Grant MD, Fischl B, Seidman LJ, Tsuang MT, Kremen WS, Dale AM (2012) Hierarchical genetic organization of human cortical surface area. Science 335:1634–1636

    CAS  PubMed Central  PubMed  Google Scholar 

  • Corbett-Detig J, Habas PA, Scott JA, Kim K, Rajagopalan V, McQuillen PS, Barkovich AJ, Glenn OA, Studholme C (2011) 3D global and regional patterns of human fetal subplate growth determined in utero. Brain Struct Funct 215:255–263

    CAS  PubMed Central  PubMed  Google Scholar 

  • Counsell SJ, Allsop JM, Harrison MC, Larkman DJ, Kennea NL, Kapellou O, Cowan FM, Hajnal JV, Edwards AD, Rutherford MA (2003) Diffusion-weighted imaging of the brain in preterm infants with focal and diffuse white matter abnormality. Pediatrics 112:1–7

    PubMed  Google Scholar 

  • Culling CFA (1963) Handbook of histopathological techniques. Butterworth & Co, London

    Google Scholar 

  • Del Rio JA, Martinez A, Auladell C, Soriano E (2000) Developmental history of the subplate and developing white matter in the murine neocortex. Neuronal organization and relationship with the main afferent systems at embryonic and perinatal stages. Cereb Cortex 10:784–801

    PubMed  Google Scholar 

  • Delalle I, Evers P, Kostović I, Uylings HB (1997) Laminar distribution of neuropeptide Y-immunoreactive neurons in human prefrontal cortex during development. J Comp Neurol 379(4):515–522

    CAS  PubMed  Google Scholar 

  • Dudink J, Buijs J, Govaert P, van Zwol AL, Conneman N, van Goudoever JB, Lequin M (2010) Diffusion tensor imaging of the cortical plate and subplate in very-low-birth-weight infants. Pediatr Radiol 40:1397–1404

    PubMed Central  PubMed  Google Scholar 

  • Eastwood SL, Harrison PJ (2005) Interstitial white matter neuron density in the dorsolateral prefrontal cortex and parahippocampal gyrus in schizophrenia. Schizophr Res 79:181–188

    CAS  PubMed  Google Scholar 

  • Flechsig P (1920) Anatomie des menschlichen Gehirns und Ruchenmarks auf myelogenetischer Grundlage. Thieme, Leipzig

    Google Scholar 

  • Fransson P, Aden U, Blennow M, Lagercrantz H (2011) The functional architecture of the infant brain as revealed by resting-state fMRI. Cereb Cortex 21:145–154

    PubMed  Google Scholar 

  • Gallyas F (1979) Silver staining of myelin by means of physical development. Neurol Res 1:203–209

    CAS  PubMed  Google Scholar 

  • Ghosh A, Shatz CJ (1994) Segregation of geniculocortical afferents during the critical period—a role for subplate neurons. J Neurosci 14:3862–3880

    CAS  PubMed  Google Scholar 

  • Goldman PS, Galkin TW (1978) Prenatal removal of frontal association cortex in fetal rhesus-monkey—anatomical and functional consequences in postnatal life. Brain Res 152:451–485

    CAS  PubMed  Google Scholar 

  • Habas PA, Kim K, Corbett-Detig JM, Rousseau F, Glenn OA, Barkovich AJ, Studholme C (2010) A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation. Neuroimage 53:460–470

    PubMed Central  PubMed  Google Scholar 

  • Hadders-Algra M (2007) Putative neural substrate of normal and abnormal general movements. Neurosci Biobehav Rev 31:1181–1190

    PubMed  Google Scholar 

  • Hagmann P, Sporns O, Madan N, Cammoun L, Pienaar R, Wedeen VJ, Meuli R, Thiran JP, Grant PE (2010) White matter maturation reshapes structural connectivity in the late developing human brain. Proc Natl Acad Sci USA 107:19067–19072

    CAS  PubMed  Google Scholar 

  • Hanganu IL, Kilb W, Luhmann HJ (2001) Spontaneous synaptic activity of subplate neurons in neonatal rat somatosensory cortex. Cereb Cortex 11:400–410

    CAS  PubMed  Google Scholar 

  • Hanganu IL, Kilb W, Luhmann HJ (2002) Functional synaptic projections onto subplate neurons in neonatal rat somatosensory cortex. J Neurosci 22:7165–7176

    CAS  PubMed  Google Scholar 

  • Hoerder-Suabedissen A, Molnar Z (2012) Molecular diversity of early-born subplate neurons. Cereb Cortex

  • Hoerder-Suabedissen A, Wang WZ, Lee S, Davies KE, Goffinet AM, Rakic S, Parnavelas J, Reim K, Nicolic M, Paulsen O, Molnar Z (2009) Novel markers reveal subpopulations of subplate neurons in the murine cerebral cortex. Cereb Cortex 19:1738–1750

    PubMed  Google Scholar 

  • Hsu SM, Raine L, Fanger H (1981) The use of antiavidin antibody and avidin-biotin-peroxidase complex in immunoperoxidase technics. Am J Clin Pathol 75:816–821

    CAS  PubMed  Google Scholar 

  • Huang H, Xue R, Zhang JY, Ren TB, Richards LJ, Yarowsky P, Miller MI, Mori S (2009) Anatomical characterization of human fetal brain development with diffusion tensor magnetic resonance imaging. J Neurosci 29:4263–4273

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang H, Jeong T, Sedmak G, Pletikos M, Vasung L, Xu X, Yarowsky P, Richards LJ, Kostović I, Sestan N, Mori S (2012) Coupling diffusion imaging with histological and gene expression analysis to examine the dynamics of cortical area across the fetal period of human brain development. Cereb Cortex doi:10.1093/cercor/bhs241

  • Huppi PS, Murphy B, Maier SE, Zientara GP, Inder TE, Barnes PD, Kikinis R, Jolesz FA, Volpe JJ (2001) Microstructural brain development after perinatal cerebral white matter injury assessed by diffusion tensor magnetic resonance imaging. Pediatrics 107:455–460

    CAS  PubMed  Google Scholar 

  • Innocenti GM, Price DJ (2005) Exuberance in the development of cortical networks. Nat Rev Neurosci 6:955–965

    CAS  PubMed  Google Scholar 

  • Judaš M, Sestan N, Kostović I (1999) Nitrinergic neurons in the developing and adult human telencephalon: Transient and permanent patterns of expression in comparison to other mammals. Microsc Res Tech 45:401–419

    PubMed  Google Scholar 

  • Judaš M, Milošević NJ, Rašin MR, Heffer-Lauc M, Kostović I (2003) Complex patterns and simple architects: molecular guidance cues for developing axonal pathways in telencephalon. Prog Mol Subcell Biol 32:1–32

    Google Scholar 

  • Judaš M, Radoš M, Jovanov-Milošević N, Hrabać P, Stern-Padovan R, Kostović I (2005) Structural, immunocytochemical, and MR imaging properties of periventricular crossroads of growing cortical pathways in preterm infants. Am J Neuroradiol 26:2671–2684

    PubMed  Google Scholar 

  • Judaš M, Sedmak G, Pletikos M (2010a) Early history of subplate and interstitial neurons: from Theodor Meynert (1867) to the discovery of the subplate zone (1974). J Anat 217:344–367

    PubMed  Google Scholar 

  • Judaš M, Sedmak G, Pletikos M, Jovanov-Milošević N (2010b) Populations of subplate and interstitial neurons in fetal and adult human telencephalon. J Anat 217:381–399

    PubMed  Google Scholar 

  • Judaš M, Šimić G, Petanjek Z, Jovanov-Milošević N, Pletikos M, Vasung L, Vukšić M, Kostović I (2011) The Zagreb Collection of human brains: a unique, versatile, but underexploited resource for the neuroscience community. Ann N Y Acad Sci 1225:105–130

    Google Scholar 

  • Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu XM, Li MF, Sousa AMM, Pletikos M, Meyer KA, Sedmak G, Guennel T, Shin Y, Johnson MB, Krsnik Z, Mayer S, Fertuzinhos S, Umlauf S, Lisgo SN, Vortmeyer A, Weinberger DR, Mane S, Hyde TM, Huttner A, Reimers M, Kleinman JE, Sestan N (2011) Spatio-temporal transcriptome of the human brain. Nature 478:483–489

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kanold PO (2009) Subplate neurons: crucial regulators of cortical development and plasticity. Front Neuroanat 2(3):16

    Google Scholar 

  • Kanold PO, Luhmann HJ (2010) The subplate and early cortical circuits. Annu Rev Neurosci 33:23–48

    CAS  PubMed  Google Scholar 

  • Karama S, Johnson W, Deary IJ, Haier R, Waber DB, Lepage C, Ganjavi H, Jung R, Evans AC, Brain Development Cooperative Group (2011) Cortical thickness correlates of specific cognitive performance accounted for by the general factor of intelligence in healthy children aged 6 to 18. Neuroimage 55:1443–1453

    PubMed Central  PubMed  Google Scholar 

  • Kidokoro H, Anderson PJ, Doyle LW, Neil JJ, Inder TE (2011) High signal intensity on T2-weighted mr imaging at term-equivalent age in preterm infants does not predict 2-year neurodevelopmental outcomes. Am J Neuroradiol 32:2005–2010

    CAS  PubMed  Google Scholar 

  • Kim SH, Fonov V, Dietrich C, Vachet C, Hazlett HC, Smith RG, Graves M, Piven J, Gilmore JH, Collins DL, Gerig G, Styner M (2012) Adaptive prior probability and spatial temporal intensity change estimation for segmentation of the one-year-old human brain. J Neurosci Methods. doi:10.1016/j.neumeth.2012.09.018

    Google Scholar 

  • Kinney HC, Haynes RL, Xu G, Andiman SE, Folkerth RD, Sleeper LA, Volpe JJ (2012) Neuron deficit in the white matter and subplate in periventricular leukomalacia. Ann Neurol 71:397–406

    PubMed Central  PubMed  Google Scholar 

  • Kostović I, Goldman-Rakic PS (1983) Transient cholinesterase staining in the mediodorsal nucleus of the thalamus and its connections in the developing human and monkey brain. J Comp Neurol 219:431–447

    PubMed  Google Scholar 

  • Kostović I, Jovanov-Milošević N (2006) The development of cerebral connections during the first 20–45 weeks’ gestation. Semin Fetal Neonatal Med 11:415–422

    PubMed  Google Scholar 

  • Kostović I, Judaš M (2002) Correlation between the sequential ingrowth of afferents and transient patterns of cortical lamination in preterm infants. Anat Rec 267:1–6

    PubMed  Google Scholar 

  • Kostović I, Judaš M (2006) Prolonged coexistence of transient and permanent circuitry elements in the developing cerebral cortex of fetuses and preterm infants. Dev Med Child Neurol 48:388–393

    PubMed  Google Scholar 

  • Kostović I, Judaš M (2007) Transient patterns of cortical lamination during prenatal life: Do they have implications for treatment? Neurosci Biobehav Rev 31:1157–1168

    PubMed  Google Scholar 

  • Kostović I, Judaš M (2010) The development of the subplate and thalamocortical connections in the human foetal brain. Acta Paediatr 99:1119–1127

    PubMed  Google Scholar 

  • Kostović I, Molliver ME (1974) New interpretation of laminar development of cerebral cortex: synaptogenesis in different layers of neopallium in human fetus. Anat Rec 178:395

    Google Scholar 

  • Kostović I, Rakic P (1980) Cytology and time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J Neurocytol 9:219–242

    PubMed  Google Scholar 

  • Kostović I, Rakic P (1984) Development of prestriate visual projections in the monkey and human-fetal cerebrum revealed by transient cholinesterase staining. J Neurosci 4:25–42

    PubMed  Google Scholar 

  • Kostović I, Rakic P (1990) Developmental history of the transient subplate zone in the visual and somatosensory cortex of the Macaque monkey and human brain. J Comp Neurol 297:441–470

    PubMed  Google Scholar 

  • Kostović I, Vasung L (2009) Insights from in vitro fetal magnetic resonance imaging of cerebral development. Semin Perinatol 33:220–233

    PubMed  Google Scholar 

  • Kostović I, Lukinović N, Judaš M, Bogdanović N, Mrzljak L, Zečević N, Kubat M (1989) Structural basis of the developmental plasticity in the human cerebral-cortex—the role of the transient subplate zone. Metab Brain Dis 4:17–23

    PubMed  Google Scholar 

  • Kostović I, Judaš M, Kostovic-Kneževic L, Šimic G, Delalle I, Chudy D, Šajin B, Petanjek Z (1991) Zagreb research collection of human brains for developmental neurobiologists and clinical neuroscientists. Int J Dev Biol 35:215–230

    PubMed  Google Scholar 

  • Kostović I, Judaš M, Radoš M, Hrabać P (2002) Laminar organization of the human fetal cerebrum revealed by histochemical markers and magnetic resonance imaging. Cereb Cortex 12:536–544

    PubMed  Google Scholar 

  • Kostović I, Judaš M, Sedmak G (2011) Developmental history of the subplate zone, subplate neurons and interstitial white matter neurons: relevance for schizophrenia. Int J Dev Neurosci 29:193–205

    PubMed  Google Scholar 

  • Kwan KY, Lam MMS, Krsnik Z, Kawasawa YI, Lefebvre V, Sestan N (2008) SOX5 postmitotically regulates migration, postmigratory differentiation, and projections of subplate and deep-layer neocortical neurons. Proc Natl Acad Sci USA 105:16021–16026

    CAS  PubMed  Google Scholar 

  • Lamantia AS, Rakic P (1994) Axon overproduction and elimination in the anterior commissure of the developing Rhesus-monkey. J Comp Neurol 340:328–336

    CAS  PubMed  Google Scholar 

  • Leroy F, Mangin JF, Rousseau F, Glasel H, Hertz-Pannier L, Dubois J, Dehaene-Lambertz G (2011) Atlas-free surface reconstruction of the cortical grey–white interface in infants. PLoS ONE 6:e27128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis DA, Levitt P (2002) Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 25:409–432

    CAS  PubMed  Google Scholar 

  • Mathur A, Inder T (2009) Magnetic resonance imaging—insights into brain injury and outcomes in premature infants. J Commun Disord 42:248–255

    PubMed Central  PubMed  Google Scholar 

  • McQuillen PS, Ferriero DM (2005) Perinatal subplate neuron injury: implications for cortical development and plasticity. Brain Pathol 15:250–260

    CAS  PubMed  Google Scholar 

  • Meynert T (1867) Der Bau der Grosshirnrinde und seine örtlichen Verschiedenheiten, nebst einem pathologisch-anatomischen Corollarium. Engelmann, Leipzig

    Google Scholar 

  • Meynert T (1872) Vom Gehirne der Säugethiere. In: Stricker S (ed) Handbuch der Lehre von den Geweben des Menschen und der Thiere, vol 2. Engelmann, Leipzig, pp 694–808

    Google Scholar 

  • Meynert T (1884) Psychiatrie: Klinik der Erkrankungen des Vorderhirns begründet auf dessen Bau, Leistung und Ernährung. Erste Hälfte. Braumüller, Wien

    Google Scholar 

  • Molliver ME, Kostović I, Van Der Loos H (1973) The development of synapses in cerebral cortex of the human fetus. Brain Res 50:403–407

    CAS  PubMed  Google Scholar 

  • Moore AR, Filipovic R, Mo ZC, Rasband MN, Zecevic N, Antic SD (2009) Electrical excitability of early neurons in the human cerebral cortex during the second trimester of gestation. Cereb Cortex 19:1795–1805

    PubMed  Google Scholar 

  • Mrzljak L, Uylings HBM, Kostovic I, Van Eden CG (1988) Prenatal development of neurons in the human prefrontal cortex: I. A qualitative Golgi study. J Comp Neurol 15:355–386

    Google Scholar 

  • Mrzljak L, Uylings HBM, Vaneden CG, Judas M (1990) Neuronal development in human prefrontal cortex in prenatal and postnatal stages. Prog Brain Res 85:185–222

    CAS  PubMed  Google Scholar 

  • Mrzljak L, Uylings HBM, Kostović I, Vaneden CG (1992) Prenatal development of neurons in the human prefrontal cortex. 2. A quantitative golgi-study. J Comp Neurol 316:485–496

    CAS  PubMed  Google Scholar 

  • Nakanishi S (1983) Extracellular matrix during laminar pattern formation of neocortex in normal and reeler mutant mice. Developmental Biology 95:305–316

    CAS  PubMed  Google Scholar 

  • Oishi K, Zilles K, Amunts K, Faria A, Jiang HY, Li X, Akhter K, Hua KG, Woods R, Toga AW, Pike GB, Rosa-Neto P, Evans A, Zhang JY, Huang H, Miller MI, van Zijl PCM, Mazziotta J, Mori S (2008) Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter. Neuroimage 43:447–457

    PubMed Central  PubMed  Google Scholar 

  • Pearlman AL, Sheppard AM (1996) Extracellular matrix in early cortical development. Neural Dev Plast 108:119–134

    CAS  Google Scholar 

  • Perkins L, Hughes E, Srinivasan L, Allsop J, Glover A, Kumar S, Fisk N, Rutherford M (2008) Exploring cortical subplate evolution using magnetic resonance imaging of the fetal brain. Dev Neurosci 30:211–220

    CAS  PubMed  Google Scholar 

  • Petanjek Z, Judaš M, Kostović I, Uylings HBM (2008) Lifespan alterations of basal dendritic trees of pyramidal neurons in the human prefrontal cortex: a layer-specific pattern. Cereb Cortex 18:915–929

    PubMed  Google Scholar 

  • Petanjek Z, Judaš M, Šimic G, Rasin MR, Uylings HBM, Rakic P, Kostović I (2011) Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci USA 108:13281–13286

    CAS  PubMed  Google Scholar 

  • Peters A, Sethares C (1996) Myelinated axons and the pyramidal cell modules in monkey primary visual cortex. J Comp Neurol 365:232–255

    CAS  PubMed  Google Scholar 

  • Prastawa M, Gilmore JH, Lin W, Gerig G (2005) Automatic segmentation of MR images of the developing newborn brain. Med Image Anal 9:457–466

    PubMed  Google Scholar 

  • Prayer D, Kasprian G, Krampl E, Ulm B, Witzani L, Prayer L, Brugger PC (2006) MRI of normal fetal brain development. Eur J Radiol 57:199–216

    PubMed  Google Scholar 

  • Radoš M, Judaš M, Kostović I (2006) In vitro MRI of brain development. Eur J Radiol 57(2):187–198

    Google Scholar 

  • Rajagopalan V, Scott J, Habas PA, Kim K, Corbett-Detig J, Rousseau F, Barkovich AJ, Glenn OA, Studholme C (2011) Local tissue growth patterns underlying normal fetal human brain gyrification quantified in utero. J Neurosci 31:2878–2887

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rhodes KE, Fawcett JW (2004) Chondroitin sulphate proteoglycans: preventing plasticity or protecting the CNS? J Anat 204:33–48

    CAS  PubMed  Google Scholar 

  • Rutherford MA (2009) Magnetic resonance imaging of the fetal brain. Curr Opin Obstet Gynecol 21:180–186

    PubMed  Google Scholar 

  • Schmahmann J, Pandya DN (2006) Fibre pathways of the brain. Oxford University Press, Oxford

    Google Scholar 

  • Schwartz ML, Goldman-Rakic PS (1991) Prenatal specification of callosal connections in Rhesus-monkey. J Comp Neurol 307:144–162

    CAS  PubMed  Google Scholar 

  • Shaw P, Kabani NJ, Lerch JP, Eckstrand K, Lenroot R, Gogtay N, Greenstein D, Clasen L, Evans A, Rapoport JL, Giedd JN, Wise SP (2008) Neurodevelopmental trajectories of the human cerebral cortex. J Neurosci 28:3586–3594

    CAS  PubMed  Google Scholar 

  • Shi F, Fan Y, Tang S, Gilmore JH, Lin W, Shen D (2010) Neonatal brain image segmentation in longitudinal MRI studies. Neuroimage 49:391–400

    PubMed Central  PubMed  Google Scholar 

  • Smyser CD, Snyder AZ, Neil JJ (2011) Functional connectivity MRI in infants: exploration of the functional organization of the developing brain. Neuroimage 56:1437–1452

    PubMed Central  PubMed  Google Scholar 

  • Stewart GR, Pearlman AL (1987) Fibronectin-like immunoreactivity in the developing cerebral-cortex. J Neurosci 7:3325–3333

    CAS  PubMed  Google Scholar 

  • Tzarouchi LC, Astrakas LG, Xydis V, Zikou A, Kosta P, Drougia A, Andronikou S, Argyropoulou MI (2009) Age-related grey matter changes in preterm infants: an MRI study. Neuroimage 47:1148–1153

    CAS  PubMed  Google Scholar 

  • Uylings HB, Delalle I (1997) Morphology of neuropeptide Y-immunoreactive neurons and fibers in human prefrontal cortex during prenatal and postnatal development. J Comp Neurol 379(4):523–540

    CAS  PubMed  Google Scholar 

  • VanEssen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385:313–318

    CAS  Google Scholar 

  • Vasung L, Huang H, Jovanov-Milošević N, Pletikos M, Mori S, Kostović I (2010) Development of axonal pathways in the human fetal fronto-limbic brain: histochemical characterization and diffusion tensor imaging. J Anat 217:400–417

    PubMed  Google Scholar 

  • Vasung L, Jovanov-Milošević N, Pletikos M, Mori S, Judaš M, Kostović I (2011) Prominent periventricular fiber system related to ganglionic eminence and striatum in the human fetal cerebrum. Brain Struct Funct 215:237–253

    CAS  PubMed  Google Scholar 

  • Volpe JJ (1996) Subplate neurons—missing link in brain injury of the premature infant? Pediatrics 97:112–113

    CAS  PubMed  Google Scholar 

  • Volpe JJ (2000) Overview: normal and abnormal human brain development. Mental Retard Dev Disabil Res Rev 6:1–5

    CAS  Google Scholar 

  • von Kölliker A (1896) Handbuch der Gewebelehre des Menschen. Sechste umgearbeitete Auflage. Zweiter Band: Nervensystem des Menschen und der Thiere. Verlag von Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Von Monakow C (1905) Gehirnpathologie. Alfred Holder, Wien

    Google Scholar 

  • Vulpius O (1892) Ueber die Entwicklung und Ausbreitung der Tangentialfasern in der menschlichen Grosshirnrinde während verschiedener Altersperioden. Archiv Psychiat Nervenkrankheit 23:775–798

    Google Scholar 

  • Wedeen VJ, Rosene DL, Wang RP, Dai GP, Mortazavi F, Hagmann P, Kaas JH, Tseng WYI (2012) The geometric structure of the brain fiber pathways. Science 335:1628–1634

    CAS  PubMed Central  PubMed  Google Scholar 

  • Widjaja E, Geibprasert S, Mahmoodabadi SZ, Blaser S, Brown NE, Shannon P (2010) Alteration of Human fetal subplate layer and intermediate zone during normal development on MR and diffusion tensor imaging. Am J Neuroradiol 31:1091–1099

    CAS  PubMed  Google Scholar 

  • Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell, Oxford, pp 3–64

    Google Scholar 

  • Zecevic N, Verney C (1995) Development of the catecholamine neurons in human embryos and fetuses, with special emphasis on the innervation of the cerebral-cortex. J Comp Neurol 351:509–535

    CAS  PubMed  Google Scholar 

  • Zikopoulos B, Barbas H (2010) Changes in prefrontal axons may disrupt the network in autism. J Neurosci 30:14595–14609

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zilles K, Amunts K (2012) Segregation and wiring in the brain. Science 335:1582–1584

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by Croatian Ministry of Science, Education and Sport Grants No. 108-1081870-1876 (to I.K.), No. 108-1081870-1878 (to M.J.), and Unity Through Knowledge Fund (UKF) grant (Director: I. Kostović). Authors gratefully acknowledge the technical assistance of Zdenka Cmuk, Danica Budinšćak, Božica Popović and Maja Horvat.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ivica Kostović or Nataša Jovanov-Milošević.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostović, I., Jovanov-Milošević, N., Radoš, M. et al. Perinatal and early postnatal reorganization of the subplate and related cellular compartments in the human cerebral wall as revealed by histological and MRI approaches. Brain Struct Funct 219, 231–253 (2014). https://doi.org/10.1007/s00429-012-0496-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-012-0496-0

Keywords

Navigation