Skip to main content

Advertisement

Log in

Somatic mutations in histiocytic sarcoma identified by next generation sequencing

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Histiocytic sarcoma is a rare malignant neoplasm of presumed hematopoietic origin showing morphologic and immunophenotypic evidence of histiocytic differentiation. Somatic mutation importance in the pathogenesis or disease progression of histiocytic sarcoma was largely unknown. To identify somatic mutations in histiocytic sarcoma, we studied 5 histiocytic sarcomas [3 female and 2 male patients; mean age 54.8 (20–72), anatomic sites include lymph node, uterus, and pleura] and matched normal tissues from each patient as germ line controls. Somatic mutations in 50 “Hotspot” oncogenes and tumor suppressor genes were examined using next generation sequencing. Three (out of five) histiocytic sarcoma cases carried somatic mutations in BRAF. Among them, G464V [variant frequency (VF) of 43.6 %] and G466R (VF of 29.6 %) located at the P loop potentially interfere with the hydrophobic interaction between P and activating loops and ultimately activation of BRAF. Also detected was BRAF somatic mutation N581S (VF of 7.4 %), which was located at the catalytic loop of BRAF kinase domain: its role in modifying kinase activity was unclear. A similar mutational analysis was also performed on nine acute monocytic/monoblastic leukemia cases, which did not identify any BRAF somatic mutations. Our study detected several BRAF mutations in histiocytic sarcomas, which may be important in understanding the tumorigenesis of this rare neoplasm and providing mechanisms for potential therapeutical opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hornick JL, Jaffe ES, Fletcher CDM (2004) Extranodal histiocytic sarcoma—clinicopathologic analysis of 14 cases of a rare epithelioid malignancy. Am J Surg Pathol 28:1133–1144. doi:10.1097/01.pas.0000131541.95394.23

    Article  PubMed  Google Scholar 

  2. Steven H, Swerdlow EC, Nancy LH, et al. (2008) WHO classification of tumours of haematopoietic and lymphoid tissue. IARC, Lyon

    Google Scholar 

  3. Takahashi E, Nakamura S (2013) Histiocytic sarcoma: an updated literature review based on the 2008 WHO classification. J Clin Exp Hematop: JCEH 53:1–8

    Article  PubMed  Google Scholar 

  4. Milchgrub S, Kamel OW, Wiley E, Vuitch F, Cleary ML, Warnke RA (1992) Malignant histiocytic neoplasms of the small intestine. Am J Surg Pathol 16:11–20

    Article  CAS  PubMed  Google Scholar 

  5. Osborne BM, Mackay B (1994) True histiocytic lymphoma with multiple skin nodules. Ultrastruct Pathol 18:241–246

    Article  CAS  PubMed  Google Scholar 

  6. Heath JL, Burgett SE, Gaca AM, Jaffe R, Wechsler DS (2014) Successful treatment of pediatric histiocytic sarcoma using abbreviated high-risk leukemia chemotherapy. Pediatr Blood Cancer 61:1874–1876. doi:10.1002/pbc.25100

    Article  PubMed  Google Scholar 

  7. Tsujimura H, Miyaki T, Yamada S, Sugawara T, Ise M, Iwata S, Yonemoto T, Ikebe D, Itami M, Kumagai K (2014) Successful treatment of histiocytic sarcoma with induction chemotherapy consisting of dose-escalated CHOP plus etoposide and upfront consolidation auto-transplantation. Int J Hematol 100:507–510. doi:10.1007/s12185-014-1630-y

    Article  CAS  PubMed  Google Scholar 

  8. Gergis U, Dax H, Ritchie E, Marcus R, Wissa U, Orazi A (2011) Autologous hematopoietic stem-cell transplantation in combination with thalidomide as treatment for histiocytic sarcoma: a case report and review of the literature. J Clin Oncol 29:e251–e253. doi:10.1200/JCO.2010.32.6603

    Article  PubMed  Google Scholar 

  9. Abidi MH, Tove I, Ibrahim RB, Maria D, Peres E (2007) Thalidomide for the treatment of histiocytic sarcoma after hematopoietic stem cell transplant. Am J Hematol 82:932–933. doi:10.1002/ajh.20913

    Article  CAS  PubMed  Google Scholar 

  10. Shukla N, Kobos R, Renaud T, Teruya-Feldstein J, Price A, McAllister-Lucas L, Steinherz P (2012) Successful treatment of refractory metastatic histiocytic sarcoma with alemtuzumab. Cancer 118:3719–3724. doi:10.1002/cncr.26712

    Article  CAS  PubMed  Google Scholar 

  11. Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ, Barford D, Marais R, Cancer Genome P (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116:855–867

    Article  CAS  PubMed  Google Scholar 

  12. Holderfield M, Merritt H, Chan J, Wallroth M, Tandeske L, Zhai H, Tellew J, Hardy S, Hekmat-Nejad M, Stuart DD, McCormick F, Nagel TE (2013) RAF inhibitors activate the MAPK pathway by relieving inhibitory autophosphorylation. Cancer Cell 23:594–602. doi:10.1016/j.ccr.2013.03.033

    Article  CAS  PubMed  Google Scholar 

  13. Cardarella S, Ogino A, Nishino M, Butaney M, Shen J, Lydon C, Yeap BY, Sholl LM, Johnson BE, Janne PA (2013) Clinical, pathologic, and biologic features associated with BRAF mutations in non-small cell lung cancer. Clin Cancer Res 19:4532–4540. doi:10.1158/1078-0432.CCR-13-0657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wright GM, Do H, Weiss J, Alam NZ, Rathi V, Walkiewicz M, John T, Russell PA, Dobrovic A (2014) Mapping of actionable mutations to histological subtype domains in lung adenocarcinoma: implications for precision medicine. Oncotarget 5:2107–2115. doi:10.18632/oncotarget.1840

    Article  PubMed  PubMed Central  Google Scholar 

  15. Santarpia L, Qi Y, Stemke-Hale K, Wang B, Young EJ, Booser DJ, Holmes FA, O’Shaughnessy J, Hellerstedt B, Pippen J, Vidaurre T, Gomez H, Valero V, Hortobagyi GN, Symmans WF, Bottai G, Di Leo A, Gonzalez-Angulo AM, Pusztai L (2012) Mutation profiling identifies numerous rare drug targets and distinct mutation patterns in different clinical subtypes of breast cancers. Breast Cancer Res Treat 134:333–343. doi:10.1007/s10549-012-2035-3

    Article  CAS  PubMed  Google Scholar 

  16. Kumar R, Angelini S, Hemminki K (2003) Activating BRAF and N-Ras mutations in sporadic primary melanomas: an inverse association with allelic loss on chromosome 9. Oncogene 22:9217–9224. doi:10.1038/sj.onc.1206909

    Article  CAS  PubMed  Google Scholar 

  17. Cancer Genome Atlas Research N (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474:609–615. doi:10.1038/nature10166

    Article  Google Scholar 

  18. Suehiro Y, Wong CW, Chirieac LR, Kondo Y, Shen L, Webb CR, Chan YW, Chan AS, Chan TL, Wu TT, Rashid A, Hamanaka Y, Hinoda Y, Shannon RL, Wang X, Morris J, Issa JP, Yuen ST, Leung SY, Hamilton SR (2008) Epigenetic-genetic interactions in the APC/WNT, RAS/RAF, and P53 pathways in colorectal carcinoma. Clin Cancer Res 14:2560–2569. doi:10.1158/1078-0432.CCR-07-1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Board RE, Ellison G, Orr MC, Kemsley KR, McWalter G, Blockley LY, Dearden SP, Morris C, Ranson M, Cantarini MV, Dive C, Hughes A (2009) Detection of BRAF mutations in the tumour and serum of patients enrolled in the AZD6244 (ARRY-142886) advanced melanoma phase II study. Br J Cancer 101:1724–1730. doi:10.1038/sj.bjc.6605371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Haroche J, Charlotte F, Arnaud L, von Deimling A, Helias-Rodzewicz Z, Hervier B, Cohen-Aubart F, Launay D, Lesot A, Mokhtari K, Canioni D, Galmiche L, Rose C, Schmalzing M, Croockewit S, Kambouchner M, Copin MC, Fraitag S, Sahm F, Brousse N, Amoura Z, Donadieu J, Emile JF (2012) High prevalence of BRAF V600E mutations in Erdheim-Chester disease but not in other non-Langerhans cell histiocytoses. Blood 120:2700–2703. doi:10.1182/blood-2012-05-430140

    Article  CAS  PubMed  Google Scholar 

  21. Michonneau D, Kaltenbach S, Derrieux C, Trinquand A, Brouzes C, Gibault L, North MO, Delarue R, Varet B, Emile JF, Brousse N, Hermine O (2014) BRAF(V600E) mutation in a histiocytic sarcoma arising from hairy cell leukemia. J Clin Oncol 32:e117–e121. doi:10.1200/JCO.2013.49.0078

    Article  PubMed  Google Scholar 

  22. Stacker SA, Achen MG (2013) The VEGF signaling pathway in cancer: the road ahead. Chin J Cancer 32:297–302. doi:10.5732/cjc.012.10319

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Go H, Jeon YK, Huh J, Choi SJ, Choi YD, Cha HJ, Kim HJ, Park G, Min S, Kim JE (2014) Frequent detection of BRAF(V600E) mutations in histiocytic and dendritic cell neoplasms. Histopathology 65:261–272. doi:10.1111/his.12416

    Article  PubMed  Google Scholar 

  24. Badalian-Very G, Vergilio JA, Degar BA, MacConaill LE, Brandner B, Calicchio ML, Kuo FC, Ligon AH, Stevenson KE, Kehoe SM, Garraway LA, Hahn WC, Meyerson M, Fleming MD, Rollins BJ (2010) Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood 116:1919–1923. doi:10.1182/blood-2010-04-279083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, Sherry S, Mullikin JC, Mortimore BJ, Willey DL, Hunt SE, Cole CG, Coggill PC, Rice CM, Ning Z, Rogers J, Bentley DR, Kwok PY, Mardis ER, Yeh RT, Schultz B, Cook L, Davenport R, Dante M, Fulton L, Hillier L, Waterston RH, McPherson JD, Gilman B, Schaffner S, Van Etten WJ, Reich D, Higgins J, Daly MJ, Blumenstiel B, Baldwin J, Stange-Thomann N, Zody MC, Linton L, Lander ES, Altshuler D, International SNPMWG (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933. doi:10.1038/35057149

    Article  CAS  PubMed  Google Scholar 

  26. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29:308–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Forbes SA, Tang G, Bindal N, Bamford S, Dawson E, Cole C, Kok CY, Jia M, Ewing R, Menzies A, Teague JW, Stratton MR, Futreal PA (2010) COSMIC (the catalogue of somatic mutations in cancer): a resource to investigate acquired mutations in human cancer. Nucleic Acids Res 38:D652–D657. doi:10.1093/nar/gkp995

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Zheng Y, Zhang W, Yu H, Lou K, Zhang Y, Qin Q, Zhao B, Yang Y, Hui R (2007) Polymorphisms of KDR gene are associated with coronary heart disease. J Am Coll Cardiol 50:760–767. doi:10.1016/j.jacc.2007.04.074

    Article  CAS  PubMed  Google Scholar 

  29. Glubb DM, Cerri E, Giese A, Zhang W, Mirza O, Thompson EE, Chen P, Das S, Jassem J, Rzyman W, Lingen MW, Salgia R, Hirsch FR, Dziadziuszko R, Ballmer-Hofer K, Innocenti F (2011) Novel functional germline variants in the VEGF receptor 2 gene and their effect on gene expression and microvessel density in lung cancer. Clin Cancer Res 17:5257–5267. doi:10.1158/1078-0432.CCR-11-0379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ribas A, Flaherty KT (2011) BRAF targeted therapy changes the treatment paradigm in melanoma. Nat Rev Clin Oncol 8:426–433. doi:10.1038/nrclinonc.2011.69

    Article  CAS  PubMed  Google Scholar 

  31. Sen B, Peng S, Tang X, Erickson HS, Galindo H, Mazumdar T, Stewart DJ, Wistuba I, Johnson FM (2012) Kinase-impaired BRAF mutations in lung cancer confer sensitivity to dasatinib. Sci Transl Med 4:136ra170. doi:10.1126/scitranslmed.3003513

    Article  Google Scholar 

  32. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438:967–974. doi:10.1038/nature04483

    Article  CAS  PubMed  Google Scholar 

  33. Laird AD, Christensen JG, Li G, Carver J, Smith K, Xin X, Moss KG, Louie SG, Mendel DB, Cherrington JM (2002) SU6668 inhibits Flk-1/KDR and PDGFRbeta in vivo, resulting in rapid apoptosis of tumor vasculature and tumor regression in mice. FASEB J 16:681–690. doi:10.1096/fj.01-0700com

    CAS  PubMed  Google Scholar 

  34. Boyer SJ (2002) Small molecule inhibitors of KDR (VEGFR-2) kinase: an overview of structure activity relationships. Curr Top Med Chem 2:973–1000

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Yu.

Ethics declarations

This study was approved by the Institutional Review Board of University of Massachusetts Medical School.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Tomaszewicz, K., Hutchinson, L. et al. Somatic mutations in histiocytic sarcoma identified by next generation sequencing. Virchows Arch 469, 233–241 (2016). https://doi.org/10.1007/s00428-016-1965-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-016-1965-2

Keywords

Navigation