Skip to main content

Advertisement

Log in

ARID1A expression loss in gastric cancer: pathway-dependent roles with and without Epstein–Barr virus infection and microsatellite instability

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

The AT-rich interactive domain 1A gene (ARID1A), which encodes one of the subunits in the Switch/Sucrose Nonfermentable chromatin remodeling complex, carries mutations and is responsible for loss of protein expression in gastric carcinoma, particularly with Epstein–Barr virus (EBV) infection and a microsatellite instability-high phenotype. We used immunohistochemistry to investigate the significance of ARID1A loss in 857 gastric carcinoma cases, including 67 EBV(+) and 136 MLH1-lost gastric carcinomas (corresponding to a microsatellite instability-high phenotype). Loss of ARID1A expression was significantly more frequent in EBV(+) (23/67; 34 %) and MLH1-lost (40/136; 29 %) gastric carcinomas than in EBV(−)MLH1-preserved (32/657; 5 %) gastric carcinomas (P < 0.01). Loss of ARID1A correlated with larger tumor size, advanced invasion depth, lymph node metastasis, and poor prognosis in EBV(−)MLH1-preserved gastric carcinoma. A correlation was found only with tumor size and diffuse-type histology in MLH1-lost gastric carcinoma, but no correlation was observed in EBV(+) gastric carcinoma. Loss of ARID1A expression in EBV(+) gastric carcinoma was highly frequent in the early stage of gastric carcinoma, although EBV infection did not cause downregulation of ARID1A: EBV-positive nasopharyngeal carcinomas (n = 8) and lymphomas (n = 15) failed to show loss of ARID1A, and EBV infection did not cause loss of ARID1A in gastric carcinoma cell lines. Taken together, loss of ARID1A may be an early change in carcinogenesis and may precede EBV infection in gastric epithelial cells, while loss of ARID1A promotes cancer progression in gastric cancer cells without EBV infection or loss of MLH1 expression. Loss of ARID1A has different and pathway-dependent roles in gastric carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal A, Center MM, DeSantis C, Ward EM (2010) Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev 19:1893–1907

    Article  PubMed  Google Scholar 

  2. Fukayama M (2010) Epstein–Barr virus and gastric carcinoma. Pathol Int 60:337–350

    Article  PubMed  CAS  Google Scholar 

  3. Kang GH, Lee S, Kim WH, Lee HW, Kim JC, Rhyu MG, Ro JY (2002) Epstein–barr virus-positive gastric carcinoma demonstrates frequent aberrant methylation of multiple genes and constitutes CpG island methylator phenotype-positive gastric carcinoma. Am J Pathol 160:787–794

    Article  PubMed  CAS  Google Scholar 

  4. Chong JM, Sakuma K, Sudo M, Ushiku T, Uozaki H, Shibahara J, Nagai H, Funata N, Taniguchi H, Aburatani H, Fukayama M (2003) Global and non-random CpG-island methylation in gastric carcinoma associated with Epstein–Barr virus. Cancer Sci 94:76–80

    Article  PubMed  CAS  Google Scholar 

  5. Chang MS, Uozaki H, Chong JM, Ushiku T, Sakuma K, Ishikawa S, Hino R, Barua RR, Iwasaki Y, Arai K, Fujii H, Nagai H, Fukayama M (2006) CpG island methylation status in gastric carcinoma with and without infection of Epstein–Barr virus. Clin Cancer Res 12:2995–3002

    Article  PubMed  CAS  Google Scholar 

  6. Hino R, Uozaki H, Murakami N, Ushiku T, Shinozaki A, Ishikawa S, Morikawa T, Nakaya T, Sakatani T, Takada K, Fukayama M (2009) Activation of DNA methyltransferase 1 by EBV latent membrane protein 2A leads to promoter hypermethylation of PTEN gene in gastric carcinoma. Cancer Res 69:2766–2774

    Article  PubMed  CAS  Google Scholar 

  7. Leung SY, Yuen ST, Chung LP, Chu KM, Chan AS, Ho JC (1999) hMLH1 promoter methylation and lack of hMLH1 expression in sporadic gastric carcinomas with high-frequency microsatellite instability. Cancer Res 59:159–164

    PubMed  CAS  Google Scholar 

  8. Fleisher AS, Esteller M, Wang S, Tamura G, Suzuki H, Yin J, Zou TT, Abraham JM, Kong D, Smolinski KN, Shi YQ, Rhyu MG, Powell SM, James SP, Wilson KT, Herman JG, Meltzer SJ (1999) Hypermethylation of the hMLH1 gene promoter in human gastric cancers with microsatellite instability. Cancer Res 59:1090–1095

    PubMed  CAS  Google Scholar 

  9. Wang K, Kan J, Yuen ST, Shi ST, Chu KM, Law S, Chan TL, Kan Z, Chan AS, Tsui WY, Lee SP, Ho SL, Chan AK, Cheng GH, Roberts PC, Rejto PA, Gibson NW, Pocalyko DJ, Mao M, Xu J, Leung SY (2011) Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat Genet 43:1219–1223

    Article  PubMed  CAS  Google Scholar 

  10. Zang ZJ, Cutcutache I, Poon SL, Zhang SL, McPherson JR, Tao J, Rajasegaran V, Heng HL, Deng N, Gan A, Lim KH, Ong CK, Huang D, Chin SY, Tan IB, Ng CC, Yu W, Wu Y, Lee M, Wu J, Poh D, Wan WK, Rha SY, So J, Salto-Tellez M, Yeoh KG, Wong WK, Zhu YJ, Futreal PA, Pang B, Ruan Y, Hillmer AM, Bertrand D, Nagarajan N, Rozen S, Teh BT, Tan P (2012) Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet 44:570–574

    Article  PubMed  CAS  Google Scholar 

  11. Wilson BG, Roberts CW (2011) SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer 11:481–492

    Article  PubMed  CAS  Google Scholar 

  12. Huang J, Zhao YL, Li Y, Fletcher JA, Xiao S (2007) Genomic and functional evidence for an ARID1A tumor suppressor role. Genes Chromosomes Cancer 46:745–750

    Article  PubMed  CAS  Google Scholar 

  13. Jones S, Wang TL, Shih IM, Mao TL, Nakayama K, Roden R, Glas R, Slamon D, Diaz LA, Vogelstein B, Kinzler KW, Velculescu VE, Papadopoulos N (2010) Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 330:228–231

    Article  PubMed  CAS  Google Scholar 

  14. Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, Senz J, McConechy MK, Anglesio MS, Kalloger SE, Yang W, Heravi-Moussavi A, Giuliany R, Chow C, Fee J, Zayed A, Prentice L, Melnyk N, Turashvili G, Delaney AD, Madore J, Yip S, McPherson AW, Ha G, Bell L, Fereday S, Tam A, Galletta L, Tonin PN, Provencher D, Miller D, Jones SJ, Moore RA, Morin GB, Oloumi A, Boyd N, Aparicio SA, Shih IM, Mes-Masson AM, Bowtell DD, Hirst M, Gilks B, Marra MA, Huntsman DG (2010) ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med 363:1532–1543

    Article  PubMed  CAS  Google Scholar 

  15. Guan B, Wang TL, Shih IM (2011) ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers. Cancer Res 71:6718–6727

    Article  PubMed  CAS  Google Scholar 

  16. Maeda D, Mao TL, Fukayama M, Nakagawa S, Yano T, Taketani Y, Shih IM (2010) Clinicopathological significance of loss of ARID1A immunoreactivity in ovarian clear cell carcinoma. Int J Mol Sci 11:5120–5128

    Article  PubMed  CAS  Google Scholar 

  17. Guan B, Mao TL, Panuganti PK, Kuhn E, Kurman RJ, Maeda D, Chen E, Jeng YM, Wang TL, Shih IM (2011) Mutation and loss of expression of ARID1A in uterine low-grade endometrioid carcinoma. Am J Surg Pathol 35:625–632

    Article  PubMed  Google Scholar 

  18. Wiegand KC, Lee AF, Al-Agha OM, Chow C, Kalloger SE, Scott DW, Steidl C, Wiseman SM, Gascoyne RD, Gilks B, Huntsman DG (2011) Loss of BAF250a (ARID1A) is frequent in high-grade endometrial carcinomas. J Pathol 224:328–333

    Article  PubMed  CAS  Google Scholar 

  19. Katagiri A, Nakayama K, Rahman MT, Rahman M, Katagiri H, Ishikawa M, Ishibashi T, Iida K, Otsuki Y, Nakayama S, Miyazaki K (2012) Frequent loss of tumor suppressor ARID1A protein expression in adenocarcinomas/adenosquamous carcinomas of the uterine cervix. Int J Gynecol Cancer 22:208–212

    Article  PubMed  Google Scholar 

  20. Jones S, Li M, Parsons DW, Zhang X, Wesseling J, Kristel P, Schmidt MK, Markowitz S, Yan H, Bigner D, Hruban RH, Eshleman JR, Iacobuzio-Donahue CA, Goggins M, Maitra A, Malek SN, Powell S, Vogelstein B, Kinzler KW, Velculescu VE, Papadopoulos N (2012) Somatic mutations in the chromatin remodeling gene ARID1A occur in several tumor types. Hum Mutat 33:100–103

    Article  PubMed  CAS  Google Scholar 

  21. Lauren P (1965) The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand 64:31–49

    PubMed  CAS  Google Scholar 

  22. Imai S, Nishikawa J, Takada K (1998) Cell-to-cell contact as an efficient mode of Epstein–Barr virus infection of diverse human epithelial cells. J Virol 72:4371–4378

    PubMed  CAS  Google Scholar 

  23. Iwasaki Y, Chong JM, Hayashi Y, Ikeno R, Arai K, Kitamura M, Koike M, Hirai K, Fukayama M (1998) Establishment and characterization of a human Epstein–Barr virus-associated gastric carcinoma in SCID mice. J Virol 72:8321–8326

    PubMed  CAS  Google Scholar 

  24. Mansy SS (2004) Agarose cell block: innovated technique for the processing of urine cytology for electron microscopy examination. Ultrastruct Pathol 28:15–21

    PubMed  Google Scholar 

  25. Shinozaki A, Sakatani T, Ushiku T, Hino R, Isogai M, Ishikawa S, Uozaki H, Takada K, Fukayama M (2010) Downregulation of microRNA-200 in EBV-associated gastric carcinoma. Cancer Res 70:4719–4727

    Article  PubMed  CAS  Google Scholar 

  26. Lawes DA, SenGupta S, Boulos PB (2003) The clinical importance and prognostic implications of microsatellite instability in sporadic cancer. Eur J Surg Oncol 29:201–212

    Article  PubMed  CAS  Google Scholar 

  27. Matsusaka K, Kaneda A, Nagae G, Ushiku T, Kikuchi Y, Hino R, Uozaki H, Seto Y, Takada K, Aburatani H, Fukayama M (2011) Classification of Epstein–Barr virus-positive gastric cancers by definition of DNA methylation epigenotypes. Cancer Res 71:7187–7197

    Article  PubMed  CAS  Google Scholar 

  28. Grogg KL, Lohse CM, Pankratz VS, Halling KC, Smyrk TC (2003) Lymphocyte-rich gastric cancer: associations with Epstein–Barr virus, microsatellite instability, histology, and survival. Mod Pathol 16:641–651

    Article  PubMed  Google Scholar 

  29. Banine F, Bartlett C, Gunawardena R, Muchardt C, Yaniv M, Knudsen ES, Weissman BE, Sherman LS (2005) SWI/SNF chromatin-remodeling factors induce changes in DNA methylation to promote transcriptional activation. Cancer Res 65:3542–3547

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant-in-aid for scientific research (20249022) from the Ministry of Education, Culture, Science, Sports, and Technology, Japan.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Fukayama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abe, H., Maeda, D., Hino, R. et al. ARID1A expression loss in gastric cancer: pathway-dependent roles with and without Epstein–Barr virus infection and microsatellite instability. Virchows Arch 461, 367–377 (2012). https://doi.org/10.1007/s00428-012-1303-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-012-1303-2

Keywords

Navigation