Skip to main content
Log in

Unraveling the evolution and regulation of the alternative oxidase gene family in plants

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Alternative oxidase (AOX) is a diiron carboxylate protein present in all plants examined to date that couples the oxidation of ubiquinol with the reduction of oxygen to water. The predominant structure of AOX genes is four exons interrupted by three introns. In this study, by analyzing the genomic sequences of genes from different plant species, we deduced that intron/exon loss/gain and deletion of fragments are the major mechanisms responsible for the generation and evolution of AOX paralogous genes. Integrating gene duplication and structural information with expression profiles for various AOXs revealed that tandem duplication/block duplication contributed greatly to the generation and maintenance of the AOX gene family. Notably, the expression profiles based on public microarray database showed highly diverse expression patterns among AOX members in different developmental stages and tissues and that both orthologous and paralogous genes did not have the same expression profiles due to their divergence in regulatory regions. Comparative analysis of genes in six plant species under various perturbations indicated a large number of protein kinases, transcription factors and antioxidant enzymes are co-expressed with AOX. Of these, four sets of transcription factors—WRKY, NAC, bZIP and MYB—are likely involved in the regulating the differential responses of AOX1 genes to specific stresses. Furthermore, divergence of AOX1 and AOX2 subfamilies in regulation might be the main reason for their differential stress responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albury MS, Elliott C, Moore AL (2010) Ubiquinol-binding site in the alternative oxidase: mutagenesis reveals features important for substrate binding and inhibition. Biochim Biophys Acta 1797:1933–9

    Article  CAS  PubMed  Google Scholar 

  • Allocco DJ, Kohane IS, Butte AJ (2004) Quantifying the relationship between co-expression, co-regulation and gene function. BMC bioinf 5:18

    Article  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Atteia A, van Lis R, van Hellemond JJ, Tielens AGM, Martin W, Henze K (2004) Identification of prokaryotic homologues indicates an endosymbiotic origin for the alternative oxidases of mitochondria (AOX) and chloroplasts (PTOX). Gene 330:143–148

    Article  CAS  PubMed  Google Scholar 

  • Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–78

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10

    Article  PubMed Central  PubMed  Google Scholar 

  • Carmel L, Wolf YI, Rogozin IB, Koonin EV (2007) Three distinct modes of intron dynamics in the evolution of eukaryotes. Genome Res 17:1034–1044

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carré J, Affourtit C, Moore A (2011) Interaction of purified alternative oxidase from thermogenic Arum maculatum with pyruvate. FEBS Lett 585:397

    Article  PubMed  Google Scholar 

  • Clifton R, Lister R, Parker KL, Sappl PG, Elhafez D, Millar AH, Day DA, Whelan J (2005) Stress-induced co-expression of alternative respiratory chain components in Arabidopsis thaliana. Plant Mol Biol 58:193–212

    Article  CAS  PubMed  Google Scholar 

  • Clifton R, Millar AH, Whelan J (2006) Alternative oxidases in Arabidopsis: a comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1757:730–741

    Article  CAS  Google Scholar 

  • Cohen NE, Shen R, Carmel L (2012) The role of reverse transcriptase in intron gain and loss mechanisms. Mol Biol Evol 29:179–86

    Article  CAS  PubMed  Google Scholar 

  • Considine MJ, Holtzapffel RC, Day DA, Whelan J, Millar AH (2002) Molecular distinction between alternative oxidase from monocots and dicots. Plant Physiol 129:949–953

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Costa JH, McDonald AE, Arnholdt-Schmitt B, Fernandes de Melo D (2014) A classification scheme for alternative oxidases reveals the taxonomic distribution and evolutionary history of the enzyme in angiosperms. Mitochondrion 19(Pt B):172–83

    Article  CAS  PubMed  Google Scholar 

  • Crichton PG, Albury MS, Affourtit C, Moore AL (2010) Mutagenesis of the Sauromatum guttatum alternative oxidase reveals features important for oxygen binding and catalysis. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1797:732–737

    Article  CAS  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27:1164–1165

    Article  CAS  PubMed  Google Scholar 

  • Dinant M, Baurain D, Coosemans N, Joris B, Matagne RF (2001) Characterization of two genes encoding the mitochondrial alternative oxidase in Chlamydomonas reinhardtii. Curr Genet 39:101–108

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fawcett JA, Rouze P, Van de Peer Y (2012) Higher intron loss rate in Arabidopsis thaliana than A. lyrata is consistent with stronger selection for a smaller genome. Mol Biol Evol 29:849–59

    Article  CAS  PubMed  Google Scholar 

  • Flagel LE, Wendel JF (2009) Gene duplication and evolutionary novelty in plants. New Phytol 183:557–564

    Article  PubMed  Google Scholar 

  • Frederico AM, Zavattieri MA, Campos MD, Cardoso HG, McDonald AE, Arnholdt‐Schmitt B (2009) The gymnosperm Pinus pinea contains both AOX gene subfamilies, AOX1 and AOX2. Physiol Plant 137:566–577

    Article  CAS  PubMed  Google Scholar 

  • Grant N, Onda Y, Kakizaki Y, Ito K, Watling J, Robinson S (2009) Two cys or not two cys? That is the question; alternative oxidase in the thermogenic plant sacred lotus. Plant Physiol 150:987–995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series

  • Hepburn NJ, Schmidt DW, Mower JP (2012) Loss of two introns from the magnolia tripetala mitochondrial cox2 gene implicates horizontal gene transfer and gene conversion as a novel mechanism of intron loss. Mol Biol Evol 29:3111–20

    Article  CAS  PubMed  Google Scholar 

  • Holtzapffel RC, Castelli J, Finnegan PM, Millar AH, Whelan J, Day DA (2003) A tomato alternative oxidase protein with altered regulatory properties. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1606:153–162

    Article  CAS  Google Scholar 

  • Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinf 2008:420747

    Article  Google Scholar 

  • Jeffares DC, Mourier T, Penny D (2006) The biology of intron gain and loss. TRENDS in Genet 22:16–22

    Article  CAS  Google Scholar 

  • Jiang W-k, Liu Y-l, Xia E-h, Gao L-z (2013) Prevalent role of gene features in determining evolutionary fates of whole-genome duplication duplicated genes in flowering plants. Plant Physiol 161:1844–1861

    Article  Google Scholar 

  • Knowles DG, McLysaght A (2006) High rate of recent intron gain and loss in simultaneously duplicated Arabidopsis genes. Mol Biol Evol 23:1548–1557

    Article  CAS  PubMed  Google Scholar 

  • Letunic I, Bork P (2011) Interactive tree of life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res 39:W475–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lynch M (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Kewalramani A (2003) Messenger RNA surveillance and the evolutionary proliferation of introns. Mol Biol Evol 20:563–571

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Richardson AO (2002) The evolution of spliceosomal introns. Curr Opin Genet Dev 12:701–710

    Article  CAS  PubMed  Google Scholar 

  • McDonald AE, Vanlerberghe GC (2006) Origins, evolutionary history, and taxonomic distribution of alternative oxidase and plastoquinol terminal oxidase. Comp Biochem Physiol Part D Genomics Proteomics 1:357–64

    Article  PubMed  Google Scholar 

  • Meeuse BJD (1975) Thermogenic respiration in aroids. Annu Rev Plant Physiol 26:117–126

    Article  CAS  Google Scholar 

  • Mi H, Dong Q, Muruganujan A, Gaudet P, Lewis S, Thomas PD (2010) PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the gene ontology consortium. Nucleic Acids Res 38:D204–10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Millar AH, Hoefnagel MHN, Day DA, Wiskich JT (1996) Specificity of the organic acid activation of alternative oxidase in plant mitochondria. Plant Physiol 111:613–618

    PubMed Central  CAS  PubMed  Google Scholar 

  • Millenaar F, Lambers H (2008) The alternative oxidase: in vivo regulation and function. Plant Biol 5:2–15

    Article  Google Scholar 

  • Mitrovich QM, Tuch BB, Francisco M, Guthrie C, Johnson AD (2010) Evolution of yeast noncoding RNAs reveals an alternative mechanism for widespread intron loss. Science 330:838–841

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moore AL, Albury MS (2008) Further insights into the structure of the alternative oxidase: from plants to parasites. Biochem Soc Trans 36:1022

    Article  CAS  PubMed  Google Scholar 

  • Moore AL, Shiba T, Young L, Harada S, Kita K, Ito K (2013) Unraveling the heater: new insights into the structure of the alternative oxidase. Annu Rev Plant Biol 64:637–663

    Article  CAS  PubMed  Google Scholar 

  • Moreno AA, Mukhtar MS, Blanco F, Boatwright JL, Moreno I, Jordan MR, Chen Y, Brandizzi F, Dong X, Orellana A (2012) IRE1/bZIP60-mediated unfolded protein response plays distinct roles in plant immunity and abiotic stress responses. PLoS One 7, e31944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mourier T, Jeffares DC (2003) Eukaryotic intron loss. Science 300:1393–1393

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neimanis K, Staples JF, Huner NP, McDonald AE (2013) Identification, expression, and taxonomic distribution of alternative oxidases in non-angiosperm plants. Gene 526:275–86

    Article  CAS  PubMed  Google Scholar 

  • Ng S, Giraud E, Duncan O, Law SR, Wang Y, Xu L, Narsai R, Carrie C, Walker H, Day DA (2013a) Cyclin-dependent kinase E1 (CDKE1) provides a cellular switch in plants between growth and stress responses. J Biol Chem 288:3449–3459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ng S, Ivanova A, Duncan O, Law SR, Van Aken O, De Clercq I, Wang Y, Carrie C, Xu L, Kmiec B, Walker H, Van Breusegem F, Whelan J, Giraud E (2013b) A membrane-bound NAC transcription factor, ANAC017, mediates mitochondrial retrograde signaling in Arabidopsis. Plant Cell 25:3450–71

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oliver SN, Lunn JE, Urbanczyk-Wochniak E, Lytovchenko A, Van Dongen JT, Faix B, Schmälzlin E, Fernie AR, Geigenberger P (2008) Decreased expression of cytosolic pyruvate kinase in potato tubers leads to a decline in pyruvate resulting in an in vivo repression of the alternative oxidase. Plant Physiol 148:1640–1654

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Polidoros AN, Mylona PV, Arnholdt‐Schmitt B (2009) Aox gene structure, transcript variation and expression in plants. Physiol Plant 137:342–353

    Article  CAS  PubMed  Google Scholar 

  • Proost S, Van Bel M, Sterck L, Billiau K, Van Parys T, Van de Peer Y, Vandepoele K (2009) PLAZA: a comparative genomics resource to study gene and genome evolution in plants. Plant Cell Online 21:3718–3731

    Article  CAS  Google Scholar 

  • Pu X, Lv X, Tan T, Fu F, Qin G,Lin H (2015) Roles of mitochondrial energy dissipation systems in plant development and acclimation to stress. Ann Bot: mcv063

  • Rhoads D, Umbach A, Sweet C, Lennon A, Rauch G,Siedow J (1998) Regulation of the cyanide-resistant alternative oxidase of plant mitochondria. Identification of the cysteine-residue involved in alpha-keto acid stimulation and intersubunit disulfide bond formation. The Journal of biological chemistry, 273

  • Rodríguez-Trelles F, Tarrío R, Ayala FJ (2006) Origins and evolution of spliceosomal introns. Annu Rev Genet 40:47–76

    Article  PubMed  Google Scholar 

  • Rogozin IB, Wolf YI, Sorokin AV, Mirkin BG, Koonin EV (2003) Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr Biol 13:1512–1517

    Article  CAS  PubMed  Google Scholar 

  • Rogozin IB, Carmel L, Csuros M,Koonin EV (2012) Origin and evolution of spliceosomal introns. Biol Direct, 7

  • Roy SW, Gilbert W (2006) The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet 7:211–221

    PubMed  Google Scholar 

  • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seoighe C, Gehring C (2004) Genome duplication led to highly selective expansion of the Arabidopsis thaliana proteome. Trends Genet 20:461–4

    Article  CAS  PubMed  Google Scholar 

  • Shiba T, Kido Y, Sakamoto K, Inaoka DK, Tsuge C, Tatsumi R, Takahashi G, Balogun EO, Nara T, Aoki T, Honma T, Tanaka A, Inoue M, Matsuoka S, Saimoto H, Moore AL, Harada S, Kita K (2013) Structure of the trypanosome cyanide-insensitive alternative oxidase. Proc Natl Acad Sci U S A 110:4580–5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Umbach AL, Siedow JN (1993) Covalent and noncovalent dimers of the cyanide-resistant alternative oxidase protein in higher plant mitochondria and their relationship to enzyme activity. Plant Physiol 103:845–854

    PubMed Central  CAS  PubMed  Google Scholar 

  • Umbach AL, Ng VS, Siedow JN (2006) Regulation of plant alternative oxidase activity: a tale of two cysteines. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1757:135–142

    Article  CAS  Google Scholar 

  • Vanlerberghe GC (2013) Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci 14:6805–6847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vanlerberghe GC, Cvetkovska M, Wang J (2009) Is the maintenance of homeostatic mitochondrial signaling during stress a physiological role for alternative oxidase? Physiol Plant 137:392–406

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Guo C, Shan H, Kong H (2012) Divergence of duplicate genes in exon–intron structure. Proc Natl Acad Sci 109:1187–1192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang YF, Zhu T, Niu DK (2013) Association of intron loss with high mutation rate in Arabidopsis: implications for genome size evolution. Genome Biol Evol 5:723–33

    Article  PubMed Central  PubMed  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Further Reading

  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prelic A, Bleuler S, Zimmermann P, Wille A, Buhlmann P, Gruissem W, Hennig L, Thiele L, Zitzler E (2006) A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22:1122–9

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann P, Laule O, Schmitz J, Hruz T, Bleuler S, Gruissem W (2008) Genevestigator transcriptome meta-analysis and biomarker search using rice and barley gene expression databases. Mol Plant 1:851–857

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. J.C.M. (Sjef) Smeekens and Dr. Alessia Peviani at Utrecht University, for their helpful advice in visualizing phylogenetic tree, and our lab members, Ting-Hong Tan for providing plant picture. This study was supported by the National Natural Science Foundation of China (31470342, 91417305, 31400211), the National Basic Research Program of China (973 Program) (2015CB150100), and Sichuan Natural Science Foundation (2015JY0101, 2015JY0223).

We thank anonymous reviewers for helpful comments on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-hui Lin.

Additional information

Communicated by Sureshkumar Balasubramanian

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1aFig. S1b

Three-dimensional structure of predicted AOX. Amino acid residues involved in the diiron active site are shown as pink spheres and hydrogen bonds are indicated by white color. Accession numbers for each gene are listed in supplementary table S1. Three-dimensional structure of AOX Proteins were predicted by the I-TASSER server. The figures were prepared with Pymol1.6 (http://www.pymol.org/). (GIF 3063 kb)

The dimerization potential of AOX. (GIF 5774 kb)

High resolution image (TIFF 22666 kb)

High resolution image (TIFF 35441 kb)

Fig. S2

Gene expression profiles of AOX gene family across a diversity of plant species over the development stage. Error bars represent standard error. Data were retrieved from the Genevestigator microarray database (https://www.genevestigator.com/gv/plant.jsp) using development tools. (GIF 3252 kb)

High resolution image (TIFF 5789 kb)

Fig. S3

a-h Expression profiles of the AOX gene family from some plants. The figure represents the average of expression value of log2-scale from diverse tissues or organs of plants and displayed as nodes of a tree which children nodes are included into parent nodes that reflect number of the samples. Error bars indicated standard error. Data were obtained from the Genevestigator microarray database using anatomy tools. (GIF 826 kb)

High resolution image (TIFF 5157 kb)

(PNG 561 kb)

Fig. S4

A-D Heat map of co-expressed genes. The co-expression analysis was conducted by using Genevestigator co-expression tools with the parameters of 2 log2 fold change and p ≤ 0.05 was used as cut-off. The maximum number of genes for each co-expressed gene lists is 100. (Zimmermann et al., 2008; Hruz et al., 2008). For GO annotations, the co-expressed gene lists generated from co-expression tools were loaded into agriGO (Du et al., 2010) for further analysis with suggested parameters. Hierarchical clustering was conducted by Genevestigator-hierarchical clustering tools using Euclidean distance (Prelic et al., 2006). (GIF 4526 kb)

(GIF 1771 kb)

(GIF 2145 kb)

(GIF 24884 kb)

High resolution image (TIFF 56024 kb)

High resolution image (TIFF 10779 kb)

High resolution image (TIFF 5056 kb)

High resolution image (TIFF 15148 kb)

Fig. S5a-b

Multiple alignment of AOX and PTOX (GIF 4307 kb)

(GIF 4361 kb)

High resolution image (TIFF 14028 kb)

High resolution image (TIFF 14515 kb)

Fig. S6

GO annotations. (DOC 1086 kb)

Table S1

Original sequence identifiers for plant’s AOX gene. (XLS 40 kb)

Table S2

Putative cis-acting elements of AOX gene family member (DOC 119 kb)

Table S3a

Co-expression profiles of AOX-positive-correlation. (XLS 431 kb)

Table S3b

Co-expression profiles of AOX-negative-correlation. (XLS 531 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, Xj., Lv, X. & Lin, Hh. Unraveling the evolution and regulation of the alternative oxidase gene family in plants. Dev Genes Evol 225, 331–339 (2015). https://doi.org/10.1007/s00427-015-0515-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-015-0515-2

Keywords

Navigation