Skip to main content
Log in

Epi-illumination microscopy coupled to in situ hybridization and its utility in the study of evolution and development in non-model species

  • Technical Note
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Evolutionary developmental biology often combines methods for examining morphology (e.g., scanning electron microscopy, SEM) with analyses of gene expression (e.g., RNA in situ hybridization). Due to differences in tissue preparation for SEM and gene expression analyses, the same specimen cannot be used for both sets of techniques. To aid in the understanding of morphological variation, it would be particularly useful to have a high-magnification image of the very same sample in which gene expression is subsequently analyzed. To address this need, we developed a method that couples extended depth of field (EDF) epi-illumination microscopy to in situ hybridization in a sequential format, enabling both surface microscopy and gene expression analyses to be carried out on the same specimen. We first created a digital image of inflorescence apices using epi-illumination microscopy and commercially available EDF software. We then performed RNA in situ hybridizations on photographed apices to assess the expression of two developmental genes: Knotted1 (Kn1) in Zea mays (Poaceae) and a PISTILLATA (PI) homolog in Musa basjoo (Musaceae). We demonstrate that expression signal is neither altered nor reduced in the imaged apices as compared with the unphotographed controls. The demonstrated method reduces the amount of sample material necessary for developmental research, and enables individual floral development to be placed in the context of the entire inflorescence. While the technique presented here is particularly relevant to floral developmental biology, it is applicable to any research where observation and description of external features can be fruitfully linked with analyses of gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Bateman RM, Rudall PJ (2006) Evolutionary and morphometric implications of morphological variation among flowers within an inflorescence: a case-study using European orchids. Ann Bot 98:975–993

    Article  PubMed  Google Scholar 

  • Blancaflor EB, Gilroy S (2000) Plant cell biology in the new millennium: new tools and new insights. Am J Bot 87:1547–1560

    Article  PubMed  CAS  Google Scholar 

  • Charlton WA, Macdonald AD, Posluszny U, Wilkins CP (1989) Additions to the technique of epi-illumination light-microscopy for the study of floral and vegetative apices. Can J Bot 67:1739–1743

    Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  PubMed  CAS  Google Scholar 

  • Jackson D (1991) In-situ hybridization in plants. In: Gurr SJ, McPherson MJ, Bowles DJ (eds) Molecular plant pathology: a practical approach. Oxford University Press, Oxford, pp 163–174

    Google Scholar 

  • Jackson D, Veit B, Hake S (1994) Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120:405–413

    CAS  Google Scholar 

  • Kim M, McCormick S, Timmermans M, Sinha N (2003) The expression domain of PHANTASTICA determines leaflet placement in compound leaves. Nature 424:438–443

    Article  PubMed  CAS  Google Scholar 

  • Kirchoff BK (1988) Inflorescence and flower development in Costus scaber (Costaceae). Can J Bot 66:339–345

    Article  Google Scholar 

  • Kirchoff BK (2003) Shape matters: Hofmeister’s rule, primordium shape, and flower orientation. Int J Plant Sci 164:505–517

    Article  Google Scholar 

  • Kramer EM (2005) Methods for studying the evolution of plant reproductive structures: comparative gene expression techniques. Meth Enzymol 395B:617–636

    Article  Google Scholar 

  • Lacroix CR, Macintyre J (1995) New techniques and applications for epi-illumination light-microscopy. Can J Bot 73:1842–1847

    Article  Google Scholar 

  • Lemon GD, Posluszny U (1998) A new approach to the study of apical meristem development using laser scanning confocal microscopy. Can J Bot 76:899–904

    Article  CAS  Google Scholar 

  • Leroy DO, Crane MJ (1964) The Ultropak, an aid in photomicrography. Micropaleontology 10:105–110

    Article  Google Scholar 

  • Locquin M, Langeron M (1983) Handbook of microscopy. Butterworths, London

    Google Scholar 

  • Nickolls L (1937) Physics and the detection of crime. J Sci Instrum XIV:1–8

    Article  Google Scholar 

  • Nikon (2006) NIS Elements D user’s guide. Nikon, USA

    Google Scholar 

  • Posluszny U, Scott MG, Sattler R (1980) Revisions in the technique of epi-illumination light-microscopy for the study of floral and vegetative apices. Can J Bot 58:2491–2495

    Article  Google Scholar 

  • Sattler R (1968) A technique for the study of floral development. Can J Bot 46:720–722

    Google Scholar 

  • Schichnes D, Nemson J, Sohlberg L, Ruzin SE (1998) Microwave protocols for paraffin microtechnique and in situ localization in plants. Microsc Microanal 4:491–496

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M (2006) Dermoscopy. J Dermatol 33:513–517

    Article  PubMed  Google Scholar 

  • Wilson TC, Charlton WA, Posluszny U (2006) Increased image depth for epi-illumination microscopy. Can J Bot 84:508–513

    Article  Google Scholar 

Download references

Acknowledgements

We especially acknowledge Sankar Sridaran and Solomon Stonebloom for their help in developing these techniques. We also thank Sarah Hake and her lab (Plant Gene Expression Center, United States Department of Agriculture) for providing in situ protocols and the Kn1 probe and members of the Specht lab for insightful comments on earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madelaine E. Bartlett.

Additional information

Communicated by K. Schneitz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartlett, M.E., Kirchoff, B.K. & Specht, C.D. Epi-illumination microscopy coupled to in situ hybridization and its utility in the study of evolution and development in non-model species. Dev Genes Evol 218, 273–279 (2008). https://doi.org/10.1007/s00427-008-0211-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-008-0211-6

Keywords

Navigation