Skip to main content
Log in

Apvasa marks germ-cell migration in the parthenogenetic pea aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea)

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

In the parthenogenetic and viviparous pea aphid Acyrthosiphon pisum, germline specification depends on the germ plasm localized to the posterior region of the egg chamber before the formation of the blastoderm. During blastulation, germline segregation occurs at the egg posterior, and in early gastrulation germ cells are pushed inward by the invaginating germ band. Previous studies suggest that germ cells remain dorsal in the embryo in subsequent developmental stages. In fact, though, it is not known whether germ cells remain in place or migrate dynamically during katatrepsis and germ-band retraction. We cloned Apvasa, a pea aphid homologue of Drosophila vasa, and used it as a germline marker to monitor the migration of germ cells. Apvasa messenger RNA (mRNA) was first restricted to morphologically identifiable germ cells after blastoderm formation but that expression soon faded. Apvasa transcripts were again identified in germ cells from the stage when the endosymbiotic bacteria invaded the embryo, and after that, Apvasa mRNA was present in germ cells throughout all developmental stages. At the beginning of katatrepsis, germ cells were detected at the anteriormost region of the egg chamber as they were migrating into the body cavity. During the early period of germ-band retraction, germ cells were separated into several groups surrounded by a layer of somatic cells devoid of Apvasa staining, suggesting that the coalescence between migrating germ cells and the somatic gonadal mesoderm occurs between late katatrepsis and early germ-band retraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Blackman RL (1978) Early development of the parthenogenetic egg in three species of aphids (Homoptera Aphididae). Int J Insect Morphol 7:33–44

    Article  Google Scholar 

  • Blackman RL (1987) Chapter 3. Reproduction, cytogenetics and development. In: Minks AK, Harrewijn P (eds) Aphids: their biology, natural enemies and control, volume A. Elsevier, Amsterdam, pp 163–195

    Google Scholar 

  • Brisson JA, Stern DL (2006) The pea aphid, Acyrthosiphon pisum: an emerging genomic model system for ecological, developmental and evolutionary studies. Bioessays 28:747–755

    Article  PubMed  CAS  Google Scholar 

  • Bruslé S (1962) Chronologie du développement embryonnaire des femelles parthénogénétiques de Brevicoryne brassicae (Aphididae: Homoptères). Bull Soc Zool Fr 87:396–410

    Google Scholar 

  • Büning J (1985) Morphology, ultrastructure, and germ-cell cluster formation in ovarioles of aphids. J Morphol 186:209–221

    Article  Google Scholar 

  • Castrillon DH, Quade BJ, Wang TY, Quigley C, Crum CP (2000) The human VASA gene is specifically expressed in the germ cell lineage. Proc Natl Acad Sci USA 97:9585–9590

    Article  PubMed  CAS  Google Scholar 

  • Chang CC, Dearden PK, Akam M (2002) Germ line development in the grasshopper Schistocerca gregaria: vasa as a marker. Dev Biol 252:100–118

    Article  PubMed  CAS  Google Scholar 

  • Chang CC, Lee WC, Cook CE, Lin GW, Chang T (2006) Germ-plasm specification and germline development in the parthenogenetic pea aphid Acyrthosiphon pisum: Vasa and Nanos as markers. Int J Dev Biol 50:413–421

    Article  PubMed  Google Scholar 

  • Dearden PK (2006) Germ cell development in the honeybee (Apis mellifera); vasa and nanos expression. BMC Dev Biol 6:6. DOI 10.1186/1471-213X-6-6

    Article  PubMed  CAS  Google Scholar 

  • Dearden PK, Grbic M, Donly C (2003) Vasa expression and germ-cell specification in the spider mite Tetranychus urticae. Dev Genes Evol 212:599–603

    PubMed  CAS  Google Scholar 

  • Dorer DR, Christensen AC, Johnson DH (1990) A novel RNA helicase gene tightly linked to the Triplolethal locus of Drosophila. Nucleic Acids Res 18:5489–5494

    Article  PubMed  CAS  Google Scholar 

  • Eastop VF, Hille Ris Lambers D (1976) Survey of the world’s aphids. Junk, The Hague

    Google Scholar 

  • Eddy EM (1975) Germ plasm and the differentiation of the germ cell line. Int Rev Cytol 43:229–280

    PubMed  CAS  Google Scholar 

  • Extavour CG, Akam M (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130:5869–5884

    Article  PubMed  CAS  Google Scholar 

  • Extavour CG, Pang K, Matus DQ, Martindale MQ (2005) Vasa and nanos expression patterns in a sea anemone and the evolution of bilaterian germ cell specification mechanisms. Evol Dev 7:201–215

    Article  PubMed  CAS  Google Scholar 

  • Gruidl ME, Smith PA, Kuznicki KA, McCrone JS, Kirchner J, Roussell DL, Strome S, Bennett KL (1996) Multiple potential germ-line helicases are components of the germ-line-specific P granules of Caenorhabditis elegans. Proc Natl Acad Sci USA 93:13837–13842

    Article  PubMed  CAS  Google Scholar 

  • Hadfield SJ, Axton JM (1999) Germ cells colonized by endosymbiotic bacteria. Nature 402:482

    Article  PubMed  CAS  Google Scholar 

  • Hagan HR (1951) Embryology of the viviparous insects. Ronald, New York

    Google Scholar 

  • Kunwar PS, Siekhaus DE, Lehmann R (2006) In vivo migration: a germ cell perspective. Annu Rev Cell Dev Biol 22:237–265

    Article  PubMed  CAS  Google Scholar 

  • Kuznicki KA, Smith PA, Leung-Chiu WM, Estevez AO, Scott HC, Bennett KL (2000) Combinatorial RNA interference indicates GLH-4 can compensate for GLH-1; these two P granule components are critical for fertility in C. elegans. Development 127:2907–2916

    PubMed  CAS  Google Scholar 

  • Lasko PF, Ashburner M (1988) The product of the Drosophila gene vasa is very similar to eukaryotic initiation factor-4A. Nature 335:611–617

    Article  PubMed  CAS  Google Scholar 

  • Mahowald AP (2001) Assembly of the Drosophila germ plasm. Int Rev Cytol 203:187–213

    Article  PubMed  CAS  Google Scholar 

  • Miura T, Braendle C, Shingleton A, Sisk G, Kambhampati S, Stern DL (2003) A comparison of parthenogenetic and sexual embryogenesis of the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea). J Exp Zool 295B:59–81

    Article  Google Scholar 

  • Nakao H (1999) Isolation and characterization of a Bombyx vasa-like gene. Dev Genes Evol 209:312–316

    Article  PubMed  CAS  Google Scholar 

  • Noce T, Okamoto-Ito S, Tsunekawa N (2001) Vasa homolog genes in mammalian germ cell development. Cell Struct Funct 26:131–136

    Article  PubMed  CAS  Google Scholar 

  • Raz E (2000) The function and regulation of vasa-like genes in germ-cell development. Genome Biol 1:1017.1011-1017.1016

  • Saffman EE, Lasko P (1999) Germline development in vertebrates and invertebrates. Cell Mol Life Sci 55:1141–1163

    Article  PubMed  CAS  Google Scholar 

  • Sagawa K, Yamagata H, Shiga Y (2005) Exploring embryonic germ line development in the water flea, Daphnia magna, by zinc-finger-containing VASA as a marker. Gene Expression Patterns 5:669–678

    Article  PubMed  CAS  Google Scholar 

  • Schröder R (2006) Vasa mRNA accumulates at the posterior pole during blastoderm formation in the flour beetle Tribolium castaneum. Dev Genes Evol 216:277–283

    Article  PubMed  CAS  Google Scholar 

  • Schulte-Merker S, Ho RK, Herrmann BG, Nusslein-Volhard C (1992) The protein product of the zebrafish homologue of the mouse T gene is expressed in nuclei of the germ ring and the notochord of the early embryo. Development 116:1021–1032

    PubMed  CAS  Google Scholar 

  • Shibata N, Umesono Y, Orii H, Sakurai T, Watanabe K, Agata K (1999) Expression of vasa (vas)-related genes in germline cells and totipotent somatic stem cells of planarians. Dev Biol 206:73–87

    Article  PubMed  CAS  Google Scholar 

  • Starz-Gaiano M, Cho NK, Forbes A, Lehmann R (2001) Spatially restricted activity of a Drosophila lipid phosphatase guides migrating germ cells. Development 128:983–991

    PubMed  CAS  Google Scholar 

  • Technau GM, Campos-Ortega JA (1986) Lineage analysis of transplanted individual cells in embryos of Drosophila melanogaster III. Commitment and proliferative capabilities of pole cells and midgut progenitors. Roux’s Arch Dev Biol 195:489–498

    Article  Google Scholar 

  • Thorpe JL, Doitsidou M, Ho SY, Raz E, Farber SA (2004) Germ cell migration in zebrafish is dependent on HMGCoA reductase activity and prenylation. Dev Cell 6:295–302

    Article  PubMed  CAS  Google Scholar 

  • Underwood EM, Caulton JH, Allis CD, Mahowald AP (1980) Development al fate of pole cells in Drosophila melanogaster. Dev Biol 77:303–314

    Article  PubMed  CAS  Google Scholar 

  • Van Doren M, Broihier HT, Moore LA, Lehmann R (1998) HMG-CoA reductase guides migrating primordial germ cells. Nature 396:466–469

    Article  PubMed  CAS  Google Scholar 

  • Will L (1888) Entwicklungsgeschichte der viviparen Aphiden. Zool Jahrb (Anat) 3:201–286

    Google Scholar 

  • Wylie C (1999) Germ cells. Cell 96:165–174

    Article  PubMed  CAS  Google Scholar 

  • Yoon C, Kawakami K, Hopkins N (1997) Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development 124:3157–3165

    PubMed  CAS  Google Scholar 

  • Zhang N, Zhang J, Purcell KJ, Cheng Y, Howard K (1997) The Drosophila protein Wunen repels migrating germ cells. Nature 385:64–67

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We are grateful to Chung Laboratory and to Sue-Ping Lee for the support on confocal microscopy, Wen-chih Lee for optimizing the in situ hybridization conditions, Te-pin Chang for careful manuscript proofreading. C.C. would like to thank Academia Sinica for providing a short-term visiting scholarship to work in the Institute of Molecular Biology in 2006, Wen-jer Wu and Andrew M. Wo for the reagent support. This work was supported by the National Science Council of Taiwan (95-2313-B-002-097-MY2) and the program for Academic Comprehensive Promotion of the College of Bio-Resources and Agriculture at the National Taiwan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-che Chang.

Additional information

Communicated by S. Roth

Chun-che Chang and Gee-way Lin contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Cc., Lin, Gw., Cook, C.E. et al. Apvasa marks germ-cell migration in the parthenogenetic pea aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea). Dev Genes Evol 217, 275–287 (2007). https://doi.org/10.1007/s00427-007-0142-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-007-0142-7

Keywords

Navigation