Skip to main content
Log in

A kinematic examination of hand perception

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Previous research has found that the perception of our hands is inaccurate. This distorted representation has several constant characteristics including an overestimation of hand width and an underestimation of finger length. In this study, we further investigate this phenomenon by exploring the boundaries of hand representation. Participants placed one hand underneath a table top so it was occluded from view. Using their free hand, participants were instructed to point to the location where they believed the tips and bases of each of their fingers were. These ten landmarks were recorded using a motion capture system. One group of participants pointed to the landmarks in a random order (as done in previous studies) while another group pointed to them in a systematic fashion (from the tip of the thumb sequentially through to the pinky). Furthermore, to explore if having a frame of reference facilitates hand perception, some participants initiated each of their estimations directly from the previous landmark while others initiated them from a home spot located outside the span of the hand. Results showed that the participants who pointed in the systematic order made numerous accurate judgments of hand size and were overall more precise than participants who pointed in a random order. Including a frame of reference however, had no effect on the judgments. The results also showed asymmetries in hand perception. These findings are discussed in relation to different possible internal body representations and hemispheric asymmetries in body perception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. We also conducted a repeated measures ANOVA using the standard deviation of the five repetitions to each landmark to assess if hand differences were related to the hand employed to point to the landmarks. No significant differences were found between the right and left hands.

References

  • Bolognini, N., Casanova, D., Maravita, A., & Vallar, G. (2012). Bisecting real and fake body parts: Effects of prism adaptation after right brain damage. Frontiers in Human Neuroscience, 6, 154. doi:10.3389/fnhum.2012.00154.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown, S. G., Roy, E. A., Rohr, L. E., & Bryden, P. J. (2006). Using hand performance measures to predict handedness. Laterality, 11(1), 1–14. doi:10.1080/1357650054200000440.

    Article  PubMed  Google Scholar 

  • Buchner, H., Kauert, C., & Radermacher, I. (1995). Short-term changes of finger representation at the somatosensory cortex in humans. Neuroscience Letters, 198(1), 57–59.

    Article  PubMed  Google Scholar 

  • Cicmil, N., Meyer, A. P., & Stein, J. F. (2015). Tactile Toe Agnosia and Percept of a “Missing Toe” in Healthy Humans. Perception,. doi:10.1177/0301006615607122.

    PubMed  Google Scholar 

  • Corey, D. M., Hurley, M. M., & Foundas, A. L. (2001). Right and left handedness defined: A multivariate approach using hand preference and hand performance measures. Neuropsychiatry Neuropsychol Behav Neurol, 14(3), 144–152.

    PubMed  Google Scholar 

  • de Vignemont, F., Ehrsson, H. H., & Haggard, P. (2005). Bodily illusions modulate tactile perception. Current Biology, 15(14), 1286–1290. doi:10.1016/j.cub.2005.06.067.

    Article  PubMed  Google Scholar 

  • Dijkerman, H. C., & de Haan, E. H. (2007). Somatosensory processes subserving perception and action. Behav Brain Sci, 30(2), 189–201. doi:10.1017/S0140525X07001392. (discussion 201–139).

    Article  PubMed  Google Scholar 

  • Farah, M. J., Wilson, K. D., Drain, M., & Tanaka, J. N. (1998). What is “special” about face perception? Psychological Review, 105(3), 482–498.

    Article  PubMed  Google Scholar 

  • Gonzalez, C. L. R., & Goodale, M. A. (2009). Hand preference for precision grasping predicts language lateralization. Neuropsychologia, 47(14), 3182–3189. doi:10.1016/j.neuropsychologia.2009.07.019.

    Article  PubMed  Google Scholar 

  • Guardia, D., Lafargue, G., Thomas, P., Dodin, V., Cottencin, O., & Luyat, M. (2010). Anticipation of body-scaled action is modified in anorexia nervosa. Neuropsychologia, 48(13), 3961–3966. doi:10.1016/j.neuropsychologia.2010.09.004.

    Article  PubMed  Google Scholar 

  • Haggard, P., Kitadono, K., Press, C., & Taylor-Clarke, M. (2006). The brain’s fingers and hands. Experimental Brain Research, 172(1), 94–102. doi:10.1007/s00221-005-0311-8.

    Article  PubMed  Google Scholar 

  • Janssen, L., & Steenbergen, B. (2011). Typical and atypical (cerebral palsy) development of unimanual and bimanual grasp planning. Research in Developmental Disabilities, 32(3), 963–971. doi:10.1016/j.ridd.2011.02.002.

    Article  PubMed  Google Scholar 

  • Keizer, A., Smeets, M. A., Dijkerman, H. C., Uzunbajakau, S. A., van Elburg, A., & Postma, A. (2013). Too fat to fit through the door: First evidence for disturbed body-scaled action in anorexia nervosa during locomotion. PLoS One, 8(5), e64602. doi:10.1371/journal.pone.0064602.

    Article  PubMed  PubMed Central  Google Scholar 

  • Linkenauger, S. A., Witt, J. K., Bakdash, J. Z., Stefanucci, J. K., & Proffitt, D. R. (2009). Asymmetrical body perception: A possible role for neural body representations. Psychological Science, 20(11), 1373–1380. doi:10.1111/j.1467-9280.2009.02447.x.

    Article  PubMed  PubMed Central  Google Scholar 

  • Longo, M. R., & Haggard, P. (2010). An implicit body representation underlying human position sense. Proc Natl Acad Sci USA, 107(26), 11727–11732. doi:10.1073/pnas.1003483107.

    Article  PubMed  PubMed Central  Google Scholar 

  • Margolis, A. N., & Longo, M. R. (2015). Visual detail about the body modulates tactile localisation biases. Experimental Brain Research, 233(2), 351–358. doi:10.1007/s00221-014-4118-3.

    Article  PubMed  Google Scholar 

  • Martuzzi, R., van der Zwaag, W., Farthouat, J., Gruetter, R., & Blanke, O. (2014). Human finger somatotopy in areas 3b, 1, and 2: A 7T fMRI study using a natural stimulus. Human Brain Mapping, 35(1), 213–226. doi:10.1002/hbm.22172.

    Article  PubMed  Google Scholar 

  • Napier, J. R. (1980). Hands (1st (American ed.). New York: Pantheon Books.

    Google Scholar 

  • Neri, P. (2009). Wholes and subparts in visual processing of human agency. Proceedings of the Royal Society of London B: Biological Sciences, 276(1658), 861–869.

    Article  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113.

    Article  PubMed  Google Scholar 

  • Penfield, W., & Boldrey, E. (1937). Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. London; New York: MacMillan.

    Google Scholar 

  • Porac, C., Coren, S., Steiger, J. H., & Duncan, P. (1980). Human laterality—a multidimensional approach. Canadian Journal of Psychology-Revue Canadienne De Psychologie, 34(1), 91–96. doi:10.1037/H0081015.

    Article  Google Scholar 

  • Reed, C. L., Stone, V. E., Bozova, S., & Tanaka, J. (2003). The body-inversion effect. Psychological Science, 14(4), 302–308.

    Article  PubMed  Google Scholar 

  • Richler, J. J., & Gauthier, I. (2014). A meta-analysis and review of holistic face processing. Psychological Bulletin, 140(5), 1281–1302. doi:10.1037/a0037004.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saulton, A., Dodds, T. J., Bulthoff, H. H., & de la Rosa, S. (2015). Objects exhibit body model like shape distortions. Experimental Brain Research, 233(5), 1471–1479. doi:10.1007/s00221-015-4221-0.

    Article  PubMed  PubMed Central  Google Scholar 

  • Seitz, K. (2002). Parts and wholes in person recognition: Developmental trends. Journal of Experimental Child Psychology, 82(4), 367–381.

    Article  PubMed  Google Scholar 

  • Shelton, A. L., & McNamara, T. P. (2004). Spatial memory and perspective taking. Mem Cognit, 32(3), 416–426.

    Article  PubMed  Google Scholar 

  • Smeets, J. B., & Brenner, E. (2001). Independent movements of the digits in grasping. Experimental Brain Research, 139(1), 92–100.

    Article  PubMed  Google Scholar 

  • Soros, P., Knecht, S., Imai, T., Gurtler, S., Lutkenhoner, B., Ringelstein, E. B., & Henningsen, H. (1999). Cortical asymmetries of the human somatosensory hand representation in right- and left-handers. Neuroscience Letters, 271(2), 89–92.

    Article  PubMed  Google Scholar 

  • Sposito, A. V., Bolognini, N., Vallar, G., & Maravita, A. (2012). Extension of perceived arm length following tool-use: Clues to plasticity of body metrics. Neuropsychologia, 50(9), 2187–2194. doi:10.1016/j.neuropsychologia.2012.05.022.

    Article  PubMed  Google Scholar 

  • Sposito, A. V., Bolognini, N., Vallar, G., Posteraro, L., & Maravita, A. (2010). The spatial encoding of body parts in patients with neglect and neurologically unimpaired participants. Neuropsychologia, 48(1), 334–340. doi:10.1016/j.neuropsychologia.2009.09.026.

    Article  PubMed  Google Scholar 

  • Steenhuis, R. E., Bryden, M. P., Schwartz, M., & Lawson, S. (1990). Reliability of Hand Preference Items and Factors. Journal of Clinical and Experimental Neuropsychology, 12(6), 921–930. doi:10.1080/0168863900840103.

    Article  PubMed  Google Scholar 

  • Stone, K. D., & Gonzalez, C. L. (2014). Grasping with the eyes of your hands: Hapsis and vision modulate hand preference. Experimental Brain Research, 232(2), 385–393. doi:10.1007/s00221-013-3746-3.

    Article  PubMed  Google Scholar 

  • Sutherling, W. W., Levesque, M. F., & Baumgartner, C. (1992). Cortical sensory representation of the human hand: Size of finger regions and nonoverlapping digit somatotopy. Neurology, 42(5), 1020–1028.

    Article  PubMed  Google Scholar 

  • Tanaka, J. W., & Farah, M. J. (1993). Parts and wholes in face recognition. Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 46(2), 225–245.

    Article  Google Scholar 

  • Warren, W. H., Jr., & Whang, S. (1987). Visual guidance of walking through apertures: Body-scaled information for affordances. Journal of Experimental Psychology: Human Perception and Performance, 13(3), 371–383.

    PubMed  Google Scholar 

  • Wing, A. M., & Fraser, C. (1983). The contribution of the thumb to reaching movements. Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 35(Pt 2), 297–309.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lara A. Coelho.

Ethics declarations

Funding

This study was funded by a discovery grant awarded to Claudia LR Gonzalez from the Natural Sciences and Engineering Research Council of Canada.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coelho, L.A., Zaninelli, G. & Gonzalez, C.L.R. A kinematic examination of hand perception. Psychological Research 81, 1224–1231 (2017). https://doi.org/10.1007/s00426-016-0815-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-016-0815-9

Keywords

Navigation