Skip to main content
Log in

A goal-based mechanism for delayed motor intention: considerations from motor skills, tool use and action memory

  • Review
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Thinking about our behaviors for a future recall like playing a piano sonata during the next weekend (i.e., delayed motor intention) should engage at some level sensorimotor-based representations. Theoretically, such representations can be stored through both an action- and a goal-based mechanism. An action-based mechanism is related to the specific motor sequence of fingers like the key presses on the piano, and a goal-based mechanism is related to the musical tones generated by the key presses. From these considerations, the present article tries to explore whether the cognitive nature of delayed motor intention is more based on an action or goal mechanism. We reviewed empirical evidence and theoretical accounts of different domains such as motor skills, tool use, and action memory supporting the idea that such delayed motor intentions are rather represented through a goal-based mechanism. The specific role of this goal-based mechanism is to envision the future in an implementation-neutral mode to flexibly and efficiently retrieve an adapted action to environmental constraints. This goal-based account offers an interesting alternative to reshape the classical models about the representations of delayed motor intention. We also discuss how this account can be applied to practical activities in daily life situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. By the action versus expected effect distinction, we mean that it is likely to envisage these DMI as being preferentially guided by what an individual has to perform (and which indirectly modify the environment) versus what an individual expects that his action will change in the environment (and which indirectly guide what he has to perform). This distinction will be discussed in more detail below.

  2. These results might appear inconsistent with the results presented above with regard to a low KR frequency during a physical practice procedure. In fact, this previous study showed that when people form a DMI, the enhancement of the external information by reducing KR leads them to increase learning in retention test, suggesting that when we form an intention, this intention needs external goal information, and this need can be afforded through physical practice if a low KR frequency is scheduled. Here, participants of the PRA +I condition did not focus on external goal information but on action itself because of a high KR of results (100 %).

References

  • Adams, J. A. (1971). A closed-loop theory of motor learning. Journal of Motor Behavior, 3, 111–150.

    PubMed  Google Scholar 

  • Anderson, J. R. (1993). Rules of the mind. Hillsdale: Erlbaum.

    Google Scholar 

  • Bäckman, L., & Nilsson, L. G. (1984). Aging effects in free recall: an exception to the rule. Human Learning, 3, 53–69.

    Google Scholar 

  • Badets, A. (2013). Semantic sides of three-dimensional space representation. Behavioral and Brain Sciences, 36, 543.

    PubMed  Google Scholar 

  • Badets, A., Albinet, C. T., & Blandin, Y. (2012). Sensory-based mechanism for delayed motor intention. Acta Psychologica, 141, 205–213.

    PubMed  Google Scholar 

  • Badets, A., & Blandin, Y. (2010). Feedback schedules for motor-skill learning: the similarities and differences between physical and observational practice. Journal of Motor Behavior, 42, 257–268.

    PubMed  Google Scholar 

  • Badets, A., & Blandin, Y. (2012). Feedback and intention during motor-skill learning: a connection with prospective memory. Psychological Research, 76, 601–610.

    PubMed  Google Scholar 

  • Badets, A., Blandin, Y., Bouquet, C., & Shea, C. H. (2006a). The intention superiority effect in motor-skill performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 491–505.

    PubMed  Google Scholar 

  • Badets, A., Blandin, Y., & Shea, C. H. (2006b). Intention in motor learning through observation. The Quarterly Journal of Experimental Psychology, 59, 377–386.

    PubMed  Google Scholar 

  • Badets, A., & Pesenti, M. (2011). Finger–number interaction: an ideomotor account. Experimental Psychology, 58, 287–292.

    PubMed  Google Scholar 

  • Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645.

    PubMed  Google Scholar 

  • Binkofski, F., & Buxbaum, L. J. (2013). Two action systems in the human brain. Brain and Language 127, 222–229.

  • Bisiacchi, P. S., Schiff, S., Ciccola, A., & Kliegel, M. (2009). The role of dual-task and task-switch in prospective memory: behavioural data and neural correlates. Neuropsychologia, 47, 1362–1373.

    PubMed  Google Scholar 

  • Bjork, R. A. (1988). Retrieval practice and the maintenance of knowledge. In M. M. Gruneberg, P. E. Morris, & R. N. Sykes (Eds.), Practical aspects of memory (pp. 396–401). London: Wiley.

    Google Scholar 

  • Brandimonte, M. A., & Passolunghi, M. C. (1994). The effect of cue familiarity, cue-distinctiveness, and retention interval on prospective remembering. The Quarterly Journal of Experimental Psychology, 47, 565–587.

    PubMed  Google Scholar 

  • Brooks, B. M., & Gardiner, J. M. (1994). Age differences in memory for prospective compared with retrospective subject-performed tasks. Memory and Cognition, 22, 27–33.

    PubMed  Google Scholar 

  • Buxbaum, L. J. (2001). Ideomotor Apraxia: a call to action. Neurocase, 7, 445–448.

    PubMed  Google Scholar 

  • Buxbaum, L. J., & Kalénine, S. (2010). Action knowledge, visuomotor activation, and embodiment in the two action systems. Annals of the New York Academy of Sciences, 1191, 201–218.

    PubMed Central  PubMed  Google Scholar 

  • Carey, L. M., Abbott, D., Egan, G., & Donnan, G. (2008). Reproducible activation in BA2, 1 and 3b associated with texture discrimination in healthy volunteers over time. Neuroimage, 39, 40–51.

    PubMed  Google Scholar 

  • Chasteen, A. L., Park, D. C., & Schwarz, N. (2001). Implementation intentions and facilitation of prospective memory. Psychological Science, 12, 457–461.

    PubMed  Google Scholar 

  • Cohen, R. L. (1989). Memory for action events: the power of enactment. Educational Psychological Review, 1, 57–80.

    Google Scholar 

  • Cohen, D. A., Pascual-Leone, A., Press, D. Z., & Robertson, E. M. (2005). Off-line learning of motor skill memory: a double-dissociation of goal and movement. Proceedings of the National Academy of Sciences of the United States of America, 102, 18237–18241.

    PubMed Central  PubMed  Google Scholar 

  • Cooper, R. P., & Shallice, T. (2000). Contention scheduling and the control of routine activities. Cognitive Neuropsychology, 17, 297–338.

    PubMed  Google Scholar 

  • Cooper, R. P., & Shallice, T. (2006). Hierarchical schemas and goals in the control of sequential behavior. Psychological Review, 113, 887–916.

    PubMed  Google Scholar 

  • De Renzi, E. (1989). Apraxia. In F. Boller & J. Grafman (Eds.), Handbook of neuropsychology (pp. 245–263). Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  • Dismukes, R. K. (2006). Concurrent task management and prospective memory: pilot error as a model for the vulnerability of experts, In Proceedings of the Human Factors and Ergonomics Society, 50th Annual Meeting (pp. 903–114). San Francisco: HFES.

  • Dismukes, R. K. (2008). Prospective memory in aviation and everyday settings. In M. Kliegel, M. A. McDaniel, & G. O. Einstein (Eds.), Prospective memory: Cognitive, neuroscience, developmental, and applied perspectives (pp. 411–431). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Dismukes, R. K., Young, G., & Sumwalt, S. (1998). Cockpit interruptions and distractions: effective management requires a careful balancing act. ASRS Directline, 10, 3.

    Google Scholar 

  • Einstein, G. O., & McDaniel, M. A. (1990). Normal aging and prospective memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 717–726.

    PubMed  Google Scholar 

  • Einstein, G. O., & McDaniel, M. A. (2005). Prospective memory: multiple retrieval processes. Current Directions in Psychological Science, 14, 286–290.

    Google Scholar 

  • Ellis, J. (1996). Prospective memory or the realization of the delayed intentions: a conceptual framework for research. In M. Brandimonte, G. O. Einstein, & M. A. McDaniel (Eds.), Prospective memory: theory and applications (pp. 1–22). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Ellis, J., Kvavilashvili, L., & Milne, A. (1999). Experimental tests of prospective remembering: the influence of cue-event frequency on performance. British Journal of Psychology, 90, 9–23.

    PubMed  Google Scholar 

  • Elsner, B., & Hommel, B. (2001). Effect anticipation and action control. Journal of Experimental Psychology. Human Perception and Performance, 27, 229–240.

    PubMed  Google Scholar 

  • Engelkamp, J. (1997). Memory for to-be-performed tasks versus memory for performed tasks. Memory and Cognition, 25, 117–124.

    PubMed  Google Scholar 

  • Engelkamp, J. (1998). Memory for actions. Hove: Psychology Press.

    Google Scholar 

  • Engelkamp, J. (2001). Action memory: a system-oriented approach. In H. D. Zimmer, R. L. Cohen, M. J. Guynn, J. Engelkamp, R. Kormi-Nouri, & M. A. Foley (Eds.), Memory for action: a distinct form of episodic memory? (pp. 49–96). New York: Oxford University Press.

    Google Scholar 

  • Eschen, A., Freeman, J., Dietrich, T., Martin, M., Ellis, J., Martin, E., et al. (2007). Motor brain regions are involved in the encoding of delayed intentions: a fMRI study. International Journal of Psychophysiology, 64, 259–268.

    PubMed  Google Scholar 

  • Fagioli, S., Ferlazzo, F., & Hommel, B. (2007). Controlling attention through action: observing actions primes action-related stimulus dimensions. Neuropsychologia, 45, 3351–3355.

    PubMed  Google Scholar 

  • Flach, R., Press, C., Badets, A., & Heyes, C. (2010). Shaking hands: priming by social action effects. British Journal of Psychology, 101, 739–749.

    PubMed  Google Scholar 

  • Freeman, J. E., & Ellis, J. A. (2003). The representation of delayed intentions: a prospective subject-performed task? Journal of Experimental Psychology. Learning, Memory, and Cognition, 29, 976–992.

    PubMed  Google Scholar 

  • Goldenberg, G. (2013). Apraxia: the cognitive side of motor control. Oxford: Oxford University Press.

    Google Scholar 

  • Goldenberg, G., & Hagmann, S. (1998). Tool use and mechanical problem solving in apraxia. Neuropsychologia, 36, 581–589.

    PubMed  Google Scholar 

  • Goldenberg, G., Hartmann-Schmid, K., Sürer, F., Daumüller, M., & Hermsdörfer, J. (2007). The impact of dysexecutive syndrome on use of tools and technical devices. Cortex, 43, 424–435.

    PubMed  Google Scholar 

  • Goldenberg, G., & Spatt, J. (2009). The neural basis of tool use. Brain, 132, 1645–1655.

    PubMed  Google Scholar 

  • Gollwitzer, P. M. (1999). Implementation intentions: strong effects of simple plans. American Psychologist, 54, 493–503.

    Google Scholar 

  • Gollwitzer, P. M., & Brandstätter, V. (1997). Implementation intentions and effective goal pursuit. Journal of Personality and Social Psychology, 73, 186–199.

    Google Scholar 

  • Goschke, T., & Kuhl, J. (1993). Representation of intentions—persisting activation in memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 1211–1226.

    Google Scholar 

  • Goschke, T., & Kuhl, J. (1996). Remembering what to do: Explicit and implicit memory for intentions. In M. Brandimonte, G. O. Einstein, & M. McDaniel (Eds.), Prospective memory: theory and applications (pp. 53–92). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Greenwald, A. G. (1970). Sensory feedback mechanisms in performance control: with special reference to the ideo-motor mechanism. Psychological Review, 77, 73–99.

    PubMed  Google Scholar 

  • Greenwald, A. G. (1972). On doing two things at once: time sharing as a function of ideomotor compatibility. Journal of Experimental Psychology, 94, 52–57.

    PubMed  Google Scholar 

  • Guadagnoli, M. A., & Lee, T. D. (2004). Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning. Journal of Motor Behavior, 36, 212–224.

    PubMed  Google Scholar 

  • Guynn, M. J. (2008). Theory of monitoring in prospective memory: Instantiating a retrieval mode and periodic target checking. In M. Kliegel, M. A. McDaniel, & G. O. Einstein (Eds.), Prospective memory: cognitive, neuroscience, developmental, and applied perspectives (pp. 53–76). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Haggard, P. (2005). Conscious intention and motor cognition. Trends in Cognitive Sciences, 9, 290–295.

    PubMed  Google Scholar 

  • Hartmann, K., Goldenberg, G., Daumüller, M., & Hermsdörfer, J. (2005). It takes the whole brain to make a cup of coffee: the neuropsychology of naturalistic actions involving technical devices. Neuropsychologia, 43, 625–627.

    PubMed  Google Scholar 

  • Herwig, A., Prinz, W., & Waszak, F. (2007). Two modes of sensorimotor integration in intention-based and stimulus-based actions. The Quarterly Journal of Experimental Psychology, 60, 1540–1554.

    PubMed  Google Scholar 

  • Holbrook, J. B., Dismukes, R. K., & Nowinski, J. L. (2005). Identifying sources of variance in everyday prospective memory performance. Presented at the Biennial Meeting of the Society for Applied Research in Memory and Cognition, Wellington, New Zealand.

  • Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): a framework for perception and action planning. Behavioural and Brain Sciences, 24, 849–878.

    Google Scholar 

  • Hornstein, S. L., & Mulligan, N. W. (2001). Memory of action events: the role of objects in memory of self- and other-performed tasks. The American journal of psychology, 114, 199–217.

    PubMed  Google Scholar 

  • Humphreys, G. W., & Forde, E. M. E. (1998). Disordered action schema and action disorganisation syndrome. Cognitive Neuropsychology, 15, 771–811.

    Google Scholar 

  • Ivry, R. B. (1996). The representation of temporal information in perception and motor control. Current Opinion in Neurobiology, 6, 851–857.

    PubMed  Google Scholar 

  • Jahn, P., & Engelkamp, J. (2003). Design-effects in prospective and retrospective memory for actions. Experimental Psychology, 50, 4–15.

    PubMed  Google Scholar 

  • James, W. (1890). The principles of psychology (Vol. 2). New York: Dover Publications.

    Google Scholar 

  • Jarry, C., Osiurak, F., Delafuys, D., Chauviré, V., Etcharry-Bouyx, F., & Le Gall, D. (2013). Apraxia of tool use: more evidence for the technical reasoning hypothesis. Cortex, 49, 2322–2333.

    PubMed  Google Scholar 

  • Jeannerod, M. (1999). The 25th Bartlett Lecture. To act or not to act: perspectives on the representation of actions. The Quarterly Journal of Experimental Psychology, 52, 1–29.

    PubMed  Google Scholar 

  • Keele, S. W. (1968). Movement control in skilled motor performance. Psychological Bulletin, 70, 387–403.

    Google Scholar 

  • Kliegel, M., McDaniel, M. A., & Einstein, G. O. (2008). Prospective memory: cognitive, neuroscience, developmental, and applied perspectives. Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Koch, I., & Kunde, W. (2002). Verbal response–effect compatibility. Memory and Cognition, 30, 1297–1303.

    PubMed  Google Scholar 

  • Koriat, A., Ben-Zur, H., & Nussbaum, A. (1990). Encoding information for future action: memory for to-beperformed tasks versus memory for to-be-recalled tasks. Memory and Cognition, 18, 568–578.

    PubMed  Google Scholar 

  • Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: cognitive basis for stimulus–response compatibility—a model and taxonomy. Psychological Review, 97, 253–270.

    PubMed  Google Scholar 

  • Krieghoff, V., Waszak, F., Prinz, W., & Brass, M. (2011). Neural and behavioral correlates of intentional actions. Neuropsychologia, 49, 767–776.

    PubMed  Google Scholar 

  • Kunde, W., Elsner, K., & Kiesel, A. (2007). No anticipation-no action: the role of anticipation in action and perception. Cognitive Processing, 8, 71–78.

    PubMed  Google Scholar 

  • Kunde, W., Koch, I., & Hoffmann, J. (2004). Anticipated action effects affect the selection, initiation, and execution of actions. The Quarterly Journal of Experimental Psychology, 57, 87–106.

    PubMed  Google Scholar 

  • Lewin, K. (1926). Vorsatz, Wille und Bedurfnis (Resolution, will, and need). Psychologische Forschung, 7, 330–385.

    Google Scholar 

  • Mäntylä, T. (1993). Priming effects in prospective memory. Memory, 1, 203–218.

    PubMed  Google Scholar 

  • Marsh, R. L., Hicks, J. L., & Bink, M. L. (1998). Activation of completed, uncompleted, and partially completed intentions. Journal of Experimental Psychology. Learning, Memory, and Cognition, 24, 350–361.

    Google Scholar 

  • Marsh, R. L., Hicks, J. L., & Bryan, E. S. (1999). The activation of unrelated and cancelled intentions. Memory and Cognition, 27, 320–327.

    PubMed  Google Scholar 

  • Massen, C. (2013). Cognitive representations of tool-use interactions. New Ideas in Psychology, 31, 239–246.

    Google Scholar 

  • Massen, C., & Prinz, W. (2007a). Programming tool-use actions. Journal of Experimental Psychology: Human Perception and Performance, 33, 692–704.

    PubMed  Google Scholar 

  • Massen, C., & Prinz, W. (2007b). Activation of actions rules in action observation. Journal of Experimental Psychology. Learning, Memory, and Cognition, 33, 1118–1130.

    PubMed  Google Scholar 

  • Massen, C., & Prinz, W. (2009). Movements, actions and tool-use actions: an ideomotor approach to imitation. Philosophical Transactions of the Royal Society of London. Series B, 364, 2349–2358.

    PubMed Central  PubMed  Google Scholar 

  • Mechsner, F., Kerzel, D., Knoblich, G., & Prinz, W. (2001). Perceptual basis of bimanual coordination. Nature, 414, 69–73.

    PubMed  Google Scholar 

  • Melcher, T., Weidema, M., Eenshuistra, R. M., Hommel, B., & Gruber, O. (2008). The neural substrate of the ideomotor principle: an event-related fMRI analysis. NeuroImage, 39, 1274–1288.

    PubMed  Google Scholar 

  • Norman, D. A. (1981). Categorization of action slips. Psychological Review, 88, 1–15.

    Google Scholar 

  • Norman, D. A., & Shallice, T. (1986). Attention to action: willed and automatic control of behaviour. In R. J. Davidson, G. E. Schwartz, & D. Shapiro (Eds.), Consciousness and self-regulation: advances in research and theory (Vol. 4, pp 1–18). New York: Plenum Press.

    Google Scholar 

  • Osiurak, F. (2014). What neuropsychology tells us about human tool use? The four constraints theory (4CT): mechanics, space, time and effort. Neuropsychology Review, 24, 88–115.

    PubMed  Google Scholar 

  • Osiurak, F., & Badets, A. (2014). Pliers, not fingers: tool-action effect in a motor intention paradigm. Cognition, 130, 66–73.

    PubMed  Google Scholar 

  • Osiurak, F., Jarry, C., Allain, P., Aubin, G., Etcharry-Bouyx, F., Richard, I., et al. (2009). Unusual use of objects after unilateral brain damage. The technical reasoning model. Cortex, 45, 769–783.

    PubMed  Google Scholar 

  • Osiurak, F., Jarry, C., & Le Gall, D. (2010). Grasping the affordances, understanding the reasoning. Toward a dialectical theory of human tool use. Psychological Review, 117, 517–540.

    PubMed  Google Scholar 

  • Osiurak, F., Jarry, C., & Le Gall, D. (2011). Re-examining the gesture engram hypothesis. New perspectives on apraxia of tool use. Neuropsychologia, 49, 299–312.

    PubMed  Google Scholar 

  • Osiurak, F., Jarry, C., Lesourd, M., Baumard, J., & Le Gall, D. (2013). Mechanical problem-solving in left brain-damaged patients. Neuropsychologia, 51, 1964–1972.

    PubMed  Google Scholar 

  • Ostry, D. J., Darainy, M., Mattar, A. A., Wong, J., & Gribble, P. L. (2010). Somatosensory plasticity and motor learning. Journal of Neuroscience, 30, 5384–5393.

    PubMed Central  PubMed  Google Scholar 

  • Palmer, C., & Meyer, R. K. (2000). Conceptual and motor learning in music performance. Psychological Science, 11, 63–68.

    PubMed  Google Scholar 

  • Palmer, C., & van de Sande, C. (1993). Units knowledge in music performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 457–470.

    PubMed  Google Scholar 

  • Papies, E. K., Aarts, H., & de Vries, N. K. (2009). Planning is for doing: implementation intentions go beyond the mere creation of goal-directed associations. Journal of Experimental Social Psychology, 45, 1148–1151.

    Google Scholar 

  • Pereira, A., Ellis, J., & Freeman, J. (2012). Is prospective memory enhanced by cue-action semantic relatedness and enactment at encoding? Consciousness and Cognition, 21, 1257–1266.

    PubMed  Google Scholar 

  • Pezzulo, G., Barsalou, L. W., Cangelosi, A., Fischer, M. H., McRae, K., & Spivey, M. J. (2013). Computational grounded cognition: a new alliance between grounded cognition and computational modeling. Frontiers in Psychology, 3, 612.

    PubMed Central  PubMed  Google Scholar 

  • Pfister, R., Janczyk, M., Gressmann, M., Fournier, L. R., & Kunde, W. (2014). Good vibrations? Vibrotactile self-stimulation reveals anticipation of body-related action effects in motor control. Experimental Brain Research, 232, 847–854.

    PubMed  Google Scholar 

  • Reason, J. T. (1979). Actions not as planned: the price of automatization. In G. Underwood & R. Stevens (Eds.), Aspects of consciousness (pp. 67–89). London: Academic Press.

    Google Scholar 

  • Reason, J. (1990). Human Error. Cambridge: Cambridge University Press.

    Google Scholar 

  • Rothi, L. J. G., Ochipa, C., & Heilman, K. M. (1991). A cognitive neuropsychological model of limb praxis. Cognitive Neuropsychology, 8, 443–458.

    Google Scholar 

  • Schmidt, R. A. (1975). A schema theory of discrete motor-skill learning. Psychological Review, 82, 225–260.

    Google Scholar 

  • Schmidt, R. A. (1991). Frequent augmented feedback can degrade learning: Evidence and interpretations. In J. Requin & G. E. Stelmach (Eds.), Tutorials in motor neuroscience (pp. 59–75). Dordrecht: Kluwer.

    Google Scholar 

  • Schmidt, R. A., & Lee, T. D. (2011). Motor control and learning: a behavioral emphasis (5th ed.). Champaign: Human Kinetics Publishers.

    Google Scholar 

  • Schütz-Bosbach, S., & Prinz, W. (2007a). Prospective coding in event representation. Cognitive Processing, 8, 93–102.

    PubMed  Google Scholar 

  • Schütz-Bosbach, S., & Prinz, W. (2007b). Perceptual resonance: action-induced modulation of perception. Trends in Cognitive Sciences, 11, 349–355.

    PubMed  Google Scholar 

  • Schwartz, M. F. (1995). Re-examining the role of executive functions in routine action production. Annals of the New York Academy of Science, 769, 321–335.

    Google Scholar 

  • Searle, J. R. (1980). The intentionality of intention and Action. Cognitive Science, 4, 47–70.

    Google Scholar 

  • Shea, C. H., Wright, D. L., Wulf, G., & Whitacre, C. (2000). Physical and observational practice afford unique learning opportunities. Journal of Motor Behavior, 32, 27–36.

    PubMed  Google Scholar 

  • Shea, C. H., & Wulf, G. (2005). Schema theory: a critical appraisal and reevaluation. Journal of Motor Behavior, 37, 85–101.

    PubMed  Google Scholar 

  • Sherwood, D. E., & Lee, T. D. (2003). Schema theory: critical review and implications for the role of cognition in a new theory of motor learning. Research Quarterly for Exercise and Sport, 74, 376–382.

    PubMed  Google Scholar 

  • Shin, Y. K., & Proctor, R. W. (2012). Testing boundary conditions of the ideomotor hypothesis using a delayed response task. Acta Psychologica, 141, 360–372.

    PubMed  Google Scholar 

  • Steffens, M. C., Buchner, A., Wender, K. F., & Decker, C. (2007). Limits on the role of retrieval cues in memory for actions: enactment effects in the absence of object cues in the environment. Memory and Cognition, 35, 1841–1853.

    PubMed  Google Scholar 

  • Stöcker, C., & Hoffmann, J. (2004). The ideomotor principle and motor sequence acquisition: tone effects facilitate movement chunking. Psychological Research, 68, 126–137.

    PubMed  Google Scholar 

  • Suddendorf, T., & Corballis, M. C. (2007). The evolution of foresight: what is mental time travel, and is it unique to humans? Behavioral and Brain Sciences, 30, 299–351.

    PubMed  Google Scholar 

  • Summers, J. J., & Anson, J. G. (2009). Current status of the motor program: revisited. Human Movement Science, 28, 566–577.

    PubMed  Google Scholar 

  • Szpunar, K. K., Watson, J. M., & McDermott, K. B. (2007). Neural substrates of envisioning the future. Proceedings of the National Academy of Science USA, 104, 642–647.

    Google Scholar 

  • Thomas, R., Sink, J., & Haggard, P. (2013). Sensory effects of action observation: evidence for perceptual enhancement driven by sensory rather than motor simulation. Experimental Psychology, 60, 335–346.

    PubMed  Google Scholar 

  • Treisman, M., Faulkner, A., & Naish, P. L. (1992). On the relation between time perception and the timing of motor action: evidence for a temporal oscillator controlling the timing of movement. The Quarterly Journal of Experimental Psychology, 45, 235–263.

    PubMed  Google Scholar 

  • Vidoni, E. D., Acerra, N. E., Dao, E., Meehan, S. K., & Boyd, L. A. (2010). Role of the primary somatosensory cortex in motor learning: an rTMS study. Neurobiology of Learning and Memory, 93, 532–539.

    PubMed  Google Scholar 

  • Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin and Review, 9, 625–636.

    PubMed  Google Scholar 

  • Wulf, G., & Shea, C. H. (2004). Understanding the role of augmented feedback: the good, the bad, and the ugly. In A. M. Williams, N. J. Hodges, M. A. Scott, & M. L. J. Court (Eds.), Skill Acquisition in Sport: research, theory, and practice (pp. 121–144). London: Routledge.

    Google Scholar 

Download references

Acknowledgments

This work was performed within the framework of the LABEX CORTEX (ANR-11-LABX-0042) of Université de Lyon (F. Osiurak), within the program “Investissements d’Avenir” (ANR-11- IDEX-0007) operated by the French National Research Agency (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Badets.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badets, A., Osiurak, F. A goal-based mechanism for delayed motor intention: considerations from motor skills, tool use and action memory. Psychological Research 79, 345–360 (2015). https://doi.org/10.1007/s00426-014-0581-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-014-0581-5

Keywords

Navigation