Skip to main content

Advertisement

Log in

Increased pCO2 and temperature reveal ecotypic differences in growth and photosynthetic performance of temperate and Arctic populations of Saccharina latissima

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The Arctic population of the kelp Saccharina latissima differs from the Helgoland population in its sensitivity to changing temperature and CO 2 levels. The Arctic population does more likely benefit from the upcoming environmental scenario than its Atlantic counterpart.

The previous research demonstrated that warming and ocean acidification (OA) affect the biochemical composition of Arctic (Spitsbergen; SP) and cold-temperate (Helgoland; HL) Saccharina latissima differently, suggesting ecotypic differentiation. This study analyses the responses to different partial pressures of CO2 (380, 800, and 1500 µatm pCO2) and temperature levels (SP population: 4, 10 °C; HL population: 10, 17 °C) on the photophysiology (O2 production, pigment composition, D1-protein content) and carbon assimilation [Rubisco content, carbon concentrating mechanisms (CCMs), growth rate] of both ecotypes. Elevated temperatures stimulated O2 production in both populations, and also led to an increase in pigment content and a deactivation of CCMs, as indicated by 13C isotopic discrimination of algal biomass (ε p) in the HL population, which was not observed in SP thalli. In general, pCO2 effects were less pronounced than temperature effects. High pCO2 deactivated CCMs in both populations and produced a decrease in the Rubisco content of HL thalli, while it was unaltered in SP population. As a result, the growth rate of the Arctic ecotype increased at elevated pCO2 and higher temperatures and it remained unchanged in the HL population. Ecotypic differentiation was revealed by a significantly higher O2 production rate and an increase in Chl a, Rubisco, and D1 protein content in SP thalli, but a lower growth rate, in comparison to the HL population. We conclude that both populations differ in their sensitivity to changing temperatures and OA and that the Arctic population is more likely to benefit from the upcoming environmental scenario than its Atlantic counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CCM:

Carbon concentrating mechanism

DPS:

De-epoxidation state

εP :

Isotopic fractionation of organic carbon production

HL:

Helgoland

OA:

Ocean acidification

pCO2 :

Partial pressure of CO2

RGR:

Relative growth rate

ROS:

Reactive oxygen species

SP:

Spitsbergen

VAZ:

Xanthophyll cycle pigment pool

References

  • Al-Najjar MAA, de Beer D, Kühl M, Polerecky L (2012) Light utilization efficiency in photosynthetic microbial mats. Environ Microbiol 14:982–992

    Article  CAS  PubMed  Google Scholar 

  • Andría JR, Brun FG, Pérez-Llorens JL, Vergara JJ (2001) Acclimation responses of Gracilaria sp. (Rhodophyta) and Enteromorpha intestinalis (Chlorophyta) to changes in the external inorganic carbon concentration. Bot Mar 44:361–370

  • Bartsch I, Wiencke C, Bischof K, Buchholz CM, Buck BH, Eggert A, Feuerpfeil P, Hanelt D, Jacobsen S, Karez R, Karsten U, Molis M, Roleda MY, Schubert H, Schumann R, Valentin K, Weinberger F, Wiese J (2008) The genus Laminaria sensu lato: recent insights and developments. Eur J Phycol 43:1–86

    Article  Google Scholar 

  • Beardall J, Griffiths H, Raven JA (1982) Carbon isotope discrimination and the CO2 accumulating mechanism in Chlorella emersonii. J Exp Bot 33:729–737

    Article  CAS  Google Scholar 

  • Borchard C, Engel A (2012) Organic matter exudation by Emiliania huxleyi under simulated future ocean conditions. Biogeosciences 9:3405–3423

    Article  CAS  Google Scholar 

  • Clarke JE, Johnson GN (2001) In vivo temperature dependence of cyclic and pseudocyclic electron transport in barley. Planta 212:808–816

    Article  CAS  PubMed  Google Scholar 

  • Colombo-Pallotta MF, García-Mendoza E, Ladah LB (2006) Photosynthetic performance, light absorption, and pigment composition of Macrocystis pyrifera (Laminariales, Phaeophyceae) blades from different depths. J Phycol 42:1225–1234

    Article  CAS  Google Scholar 

  • de Castro AS, Tavano Garcia VM (2005) Growth and biochemical composition of the diatom Chaetoceros cf. wighamii bright well under different temperature, salinity and carbon dioxide levels. I. Protein, carbohydrates and lipids. Aquaculture 246:405–412

    Article  Google Scholar 

  • Diaz-Pulido G, Gouezo M, Tilbrook B, Dove S, Anthony K (2011) High CO2 enhances the competitive strength of seaweeds over corals. Ecol Lett 14:156–162

    Article  PubMed Central  PubMed  Google Scholar 

  • Dickson AG (1990) Standard potential of the reaction—AgCl(s) + 1/2H2(G) = AG(g) + HCl(aq) and the standard acidity constant of the ion HSO4 in synthetic sea-water from 273.15 K to 318.15K. J Chem Thermodyn 22:113–127

    Article  CAS  Google Scholar 

  • Feikema WO, Marosvölgyi MA, Lavaud J, van Gorkom HJ (2006) Cyclic electron transfer in photosystem II in the marine diatom Phaeodactylum tricornutum. Biochim Biophys Acta 1757:829–834

    Article  CAS  Google Scholar 

  • Feng Y, Warner ME, Zhang Y, Sun J, Fu FX, Rose JM, Hutchins DA (2008) Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae). Eur J Phycol 43:87–98

    Article  CAS  Google Scholar 

  • Freeman HJ, Hayes JM (1992) Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Global Biogeochem Cycles 6:185–198

    Article  CAS  PubMed  Google Scholar 

  • Fu FX, Warner ME, Zhang YH, Feng YY, Hutchins DA (2007) Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria). J Phycol 43:485–496

    Article  Google Scholar 

  • Gao K, Xu J, Gao G, Li Y et al (2012) Rising CO2 and increased light exposure synergistically reduce marine primary productivity. Nat Clim Change 2:519–523

    CAS  Google Scholar 

  • García-Gómez C, Gordillo FJL, Palma A, Lorenzo RM, Segovia M (2014) Elevated CO2 alleviates high PAR and UV stress in the unicellular chlorophyte Dunaliella tertiolecta. Photochem Photobiol Sci 13:1347–1358

    Article  PubMed  Google Scholar 

  • García-Sánchez MJ, Fernández JA, Niell X (1994) Effect of inorganic carbon supply on the photosynthetic physiology of Gracilaria tenuistipitata. Planta 194:55–61

    Article  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation and evolution. Annu Rev Plant Biol 56:99–131

    Article  CAS  PubMed  Google Scholar 

  • Gordillo FJL, Jiménez C, Figueroa FL, Niell FX (1999) Effects of increased atmospheric CO2 and N supply on photosynthesis, growth and cell composition of the cyanobacterium Spirulina platensis (Arthrospira). J Appl Phycol 10:461–469

    Article  Google Scholar 

  • Gordillo FJL, Niell FX, Figueroa FL (2001) Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta). Planta 213:64–70

    Article  CAS  PubMed  Google Scholar 

  • Gordillo FJL, Figueroa FL, Niell FX (2003) Photon- and carbon-use efficiency in Ulva rigida at different CO2 and N levels. Planta 218:315–322

    Article  CAS  PubMed  Google Scholar 

  • Gordillo FJL, Aguilera J, Jimenez C (2006) The response of nutrient assimilation and biochemical composition of Arctic seaweeds to a nutrient input in summer. J Exp Bot 57:2661–2671

    Article  CAS  PubMed  Google Scholar 

  • Gordillo FJL, Aguilera J, Wiencke C, Jiménez C (2015) Ocean acidification modulates the response of two Arctic kelps to ultraviolet radiation. J Plant Physiol 173:41–50

    Article  CAS  PubMed  Google Scholar 

  • Gordillo FJL, Carmona R, Viñegla B, Wiencke C, Jiménez C (2016) Effects of simultaneous increase in temperature and ocean acidification on biochemical composition and photosynthetic performance of common macroalgae from Kongsfjorden (Svalbard). Polar Biol. doi:10.1007/s00300-016-1897-y

    Google Scholar 

  • Haglund K, Ramazanov Z, Mtolera M, Pedersen M (1992) Role of external carbonic anhydrase in light-dependent alkalization by Fucus serratus L. and Laminaria saccharina (L.) Lamour. (Phaeophyta). Planta 188:1–6

    Article  CAS  PubMed  Google Scholar 

  • Harley CDG, Anderson KM, Demes KW, Jorve JP, Kordas RL, Coyle TA (2012) Effects of climate change on global seaweed communities. J Phycol 48:1064–1078

    Article  CAS  PubMed  Google Scholar 

  • Hepburn CD, Pritchard DW, Cornwall CE, McLeod RJ, Beardall J, Raven JA, Hurd CL (2011) Diversity of carbon use strategies in a kelp forest community: implications for a high CO2 ocean. Glob Change Biol 17:2488–2497

    Article  Google Scholar 

  • Holdt SL, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597

    Article  CAS  Google Scholar 

  • Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655–684

    Article  CAS  PubMed  Google Scholar 

  • Iñiguez C, Carmona R, Lorenzo MR, Niell FX, Wiencke C, Gordillo FJL (2015) Increased CO2 modifies the carbon balance and the photosynthetic yield of two common Arctic brown seaweeds: Desmarestia aculeata and Alaria esculenta. Polar Biol. doi:10.1007/s00300-015-1724-x

    Google Scholar 

  • Koch M, Bowes G, Ross C, Zhang XH (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Change Biol 19:103–132

    Article  Google Scholar 

  • Körner C (2012) Angebot oder Nachfrage: was steuert das Pflanzenwachstum. Biol unserer Zeit 42:228–243

    Google Scholar 

  • Kranz SA, Levitan O, Richter KU, Prášil O, Berman-Frank I, Rost B (2010) Combined effects of CO2 and light on the N2-fixing cyanobacterium Trichodesmium IMS101: physiological responses. Plant Physiol 154:334–345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kübler JE, Johnston AM, Raven JA (1999) The effects of reduced and elevated CO2 and O2 on the seaweed Lomentaria articulata. Plant Cell Environ 22:1303–1310

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Leboulanger C, Martin-Jézéquel V, Descolas-Gros C, Sciandra A, Jupin HJ (1998) Photorespiration in continuous culture of Dunaliella tertiolecta (Chlorophyta): relationships between serine, glycine and extracellular glycolate. J Phycol 34:651–654

    Article  CAS  Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278

    Article  CAS  PubMed  Google Scholar 

  • Lüning K (1990) Seaweeds. Wiley-Interscience Publication, New York, Their environment biogeography and ecophysiology

    Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence - a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Mercado JM, Andría JR, Pérez-Llorens JL, Vergara JL, Axelsson L (2006) Evidence for a plasmalemma-based CO2 concentrating mechanism in Laminaria saccharina. Photosynth Res 88:259–268

    Article  CAS  PubMed  Google Scholar 

  • Millero FJ, Graham TB, Huang F, Bustos-Serrano H, Pierrot D (2006) Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Mar Chem 100:80–94

    Article  CAS  Google Scholar 

  • Mook WG, Bommerso JC, Staverma WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon-dioxide. Earth Planet Sci Lett 22:169–176

    Article  CAS  Google Scholar 

  • Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NPA (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol R 70:222–252

    Article  CAS  Google Scholar 

  • Müller R, Wiencke C, Bischof K (2008) Interactive effects of UV radiation and temperature on microstages of Laminariales (Phaeophyceae) from the Arctic and North Sea. Clim Res 37:203–213

    Article  Google Scholar 

  • Neuhoff V, Arnold N, Taube D, Ehrhardt W (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262

    Article  CAS  PubMed  Google Scholar 

  • Olischläger M, Wiencke C (2013) Ocean acidification alleviates low temperature effects on growth and photosynthesis of the red alga Neosiphonia harveyi (Rhodophyta). J Exp Bot 64:5587–5597

    Article  PubMed  Google Scholar 

  • Olischläger M, Bartsch I, Gutow L, Wiencke C (2012) Effects of ocean acidification on different life-cycle stages of the kelp Laminaria hyperborea (Phaeophyceae). Bot Mar 55:511–525

  • Olischläger M, Bartsch I, Gutow L, Wiencke C (2013) Effects of ocean acidification on growth and physiology of Ulva lactuca (Chlorophyta) in a rockpool-scenario. Phycol Res 61:180–190

    Article  Google Scholar 

  • Olischläger M, Iñiguez C, Gordillo FJL, Wiencke C (2014) Biochemical composition of temperate and Arctic populations of Saccharina latissima after exposure to increased pCO2 and temperature reveals ecotypic variation. Planta 240:1213–1224

    Article  PubMed Central  PubMed  Google Scholar 

  • Pfündel E, Bilger W (1994) Regulation and possible function of the violaxanthin cycle. Photosynth Res 42:89–109

    Article  PubMed  Google Scholar 

  • Provasoli L (1968) Media and prospects for the cultivation of marine algae. Japanese Society for Plant Physiology, Tokyo, Cultures and collections of algae. In: Proceedings of the US–Japan conference, Hakone 1966, pp 63–75

  • Raven JA (2011) The cost of photoinhibition. Physiol Plant 142:87–104

    Article  CAS  PubMed  Google Scholar 

  • Raven JA, Beardall J (2003) Carbon acquisition mechanisms of algae: carbon dioxide diffusion and carbon dioxide concentrating mechanisms. In: Larkum AW, Douglas SE, Raven JA (eds) Photosynthesis in algae. Kluwer Academic Publishers, The Netherlands, pp 225–244

    Chapter  Google Scholar 

  • Raven JA, Beardall J (2016) The ins and outs of CO2. J Exp Bot 67:1–13

    Article  CAS  PubMed  Google Scholar 

  • Raven JA, Geider RJ (1988) Temperature and algal growth. New Phytol 110:441–461

    Article  CAS  Google Scholar 

  • Raven JA, Johnston AM, Kubler JE, Korb R, McInroy SG, Handley LL, Scrimgeour CM, Walker DI, Beardall J, Clayton MN, Vanderklift M, Fredriksen S, Dunton KH (2002) Seaweeds in cold seas: evolution and carbon acquisition. Ann Bot London 90:525–536

    Article  CAS  Google Scholar 

  • Raven JA, Giordano M, Beardall J, Maberly SC (2012) Algal evolution in relation to atmospheric CO2: carboxylases, carbon concentrating mechanisms and carbon oxidation cycles. Phil Trans R Soc B 367:493–507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Riebesell U, Fabry VJ, Hansson L, Gattuso JP (2010) Guide to best practices for ocean acidification research and data reporting. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Roeske CA, O’Leary MH (1984) Carbon isotope effects on enzyme-catalyzed carboxylation of ribulose bisphosphate. Biochemistry 23(25):6275–6284

    Article  CAS  Google Scholar 

  • Rokitta SD, Rost B (2012) Effects of CO2 and their modulation by light in the life-cycle stages of the coccolithophore Emiliania huxleyi. Limnol Oceanogr 57:607–618

    Article  CAS  Google Scholar 

  • Sarker MY, Bartsch I, Olischläger M, Gutow L, Wiencke C (2013) Combined effects of CO2, temperature, irradiance and time on the physiological performance of Chondrus crispus (Rhodophyta). Bot Mar 56:63–74

  • Segovia M, Mata T, Palma A, García-Gómez C, Lorenzo R, Rivera A, Figueroa FL (2015) Dunaliella tertiolecta (Chlorophyta) avoids cell death under ultraviolet radiation by triggering alternative photoprotective mechanisms. Photochem Photobiol 91:1389–1402

    Article  CAS  PubMed  Google Scholar 

  • Sharkey TD, Berry JA (1985) Carbon isotope fractionation of algae influenced by an inducible CO2-concentrating mechanism. In: Lucas WJ, Berry JA (eds) Inorganic carbon uptake by aquatic photosynthetic organisms. American Society of Plant Physiologists, Rockville, pp 389–401

    Google Scholar 

  • Sitte P, Weiler EW, Kadereit JW, Bresinsky A, Körner C (2002) Strasburger. Spektrum Akademischer Verlag, Heidelberg Berlin, Lehrbuch der Botanik

    Google Scholar 

  • Sültemeyer D, Biehler K, Fock HP (1993) Evidence for the contribution of pseudocyclic photophosphorylation to the energy requirement of the mechanism for concentrating inorganic carbon in Chlamydomonas. Planta 189:235–242

    Article  Google Scholar 

  • Surif MB, Raven JA (1989) Exogenous inorganic carbon-sources for photosynthesis in seawater by members of the Fucales and the Laminariales (Phaeophyta) – ecological and taxonomic implications. Oecologia 78:97–105

    Article  Google Scholar 

  • Takahashi T, Williams RT, Bos DL (1982) Carbonate chemistry. In: Broecker WS, Spencer DW, Craig H (eds) GEOSECS Pacific expedition, vol 3., Hydrographic Data 1973–1974National Science Foundation, Washington, pp 77–83

    Google Scholar 

  • Vardi A, Berman-Frank I, Rozenberg T, Hadas O, Kaplan A, Levine A (1999) Programmed cell death of the dinoflagellate Peridinium gatunense is mediated by CO2 limitation and oxidative stress. Curr Biol 9:1061–1064

    Article  CAS  PubMed  Google Scholar 

  • Wiencke C, Fischer G (1990) Growth and stable carbon isotope composition of cold-water macroalgae in relation to light and temperature. Mar Ecol Prog Ser 65:283–292

    Article  Google Scholar 

  • Wright SW, Jeffrey SW, Mantoura RFC, Llewellyn CA, Bjørnland T, Repeta D, Welschmeyer N (1991) Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar Ecol Prog Ser 77:183–196

    Article  CAS  Google Scholar 

  • Xu Z, Zou D, Gao K (2010) Effects of elevated CO2 and phosphorus supply on growth, photosynthesis and nutrient uptake in the marine macroalga Gracilaria lemaneiformis (Rhodophyta). Bot Mar 53:123–129

  • Young JN, Goldman JAL, Kranz SA, Tortell PD, Morel FMM (2015) Slow carboxylation of Rubisco constrains the rate of carbon fixation during Antarctic phytoplankton blooms. New Phytol 205:172–181

    Article  CAS  PubMed  Google Scholar 

  • Zeebe R, Wolf-Gladrow DA (2001) CO2 in seawater: Equilibrium, kinetics, isotopes. Elsevier Science, Amsterdam

    Google Scholar 

  • Zhang J, Quay PD, Wilbur DO (1995) Carbon isotope fractionation during gas-water exchange and dissolution of CO2. Geochim Cosmochim Acta 59:107–114

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This is a CEI-MAR publication, partly financed by project CTM2011-24007 from the Spanish Ministry of Science and Innovation. This work was also partly funded by the German Federal Ministry for Science and Education (BMBF; Förderkennzeichen 03F0608B) as part of the BIOACID program (Subproject 4.1.1). Furthermore, we wish to thank Andreas Wagner and Claudia Daniel for assistance with lab work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Olischläger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olischläger, M., Iñiguez, C., Koch, K. et al. Increased pCO2 and temperature reveal ecotypic differences in growth and photosynthetic performance of temperate and Arctic populations of Saccharina latissima . Planta 245, 119–136 (2017). https://doi.org/10.1007/s00425-016-2594-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2594-3

Keywords

Navigation