Skip to main content
Log in

Two rice plasma membrane intrinsic proteins, OsPIP2;4 and OsPIP2;7, are involved in transport and providing tolerance to boron toxicity

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Boron (B) toxicity is responsible for low cereal crop production in a number of regions worldwide. In this report, we characterized two rice genes, OsPIP2;4 and OsPIP2;7, for their involvement in B permeability and tolerance. Transcript analysis demonstrated that the expression of OsPIP2;4 and OsPIP2;7 were downregulated in shoots and strongly upregulated in rice roots by high B treatment. Expression of both OsPIP2;4 and OsPIP2;7 in yeast HD9 strain lacking Fps1, ACR3, and Ycf1 resulted in an increased B sensitivity. Furthermore, yeast HD9 strain expressing OsPIP2;4 and OsPIP2;7 accumulated significantly higher B as compared to empty vector control, which suggests their involvement in B transport. Overexpression of OsPIP2;4 and OsPIP2;7 in Arabidopsis imparted higher tolerance under B toxicity. Arabidopsis lines overexpressing OsPIP2;4 and OsPIP2;7 showed significantly higher biomass production and greater root length, however there was no difference in B accumulation in long term uptake assay. Short-term uptake assay using tracer B (10B) in shoots and roots demonstrated increased 10B accumulation in Arabidopsis lines expressing OsPIP2;4 and OsPIP2;7, compare to wild type control plants. Efflux assay of B in the roots showed that 10B was effluxed from the Arabidopsis transgenic plants overexpressing OsPIP2;4 or OsPIP2;7 during the initial 1-h of assay. These data indicate that OsPIP2;4 and OsPIP2;7 are involved in mediating B transport in rice and provide tolerance via efflux of excess B from roots and shoot tissues. These genes will be highly useful in developing B tolerant crops for enhanced yield in the areas affected by high B toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bansal A, Sankararamakrishnan R (2007) Homology modeling of major intrinsic proteins in rice, maize and Arabidopsis: comparative analysis of transmembrane helix association and aromatic/arginine selectivity filters. BMC Struct Biol 7:27

    Article  PubMed Central  PubMed  Google Scholar 

  • Bechtold N, Pelletier G (1993) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. In: Martinez-Zapater J, Salinas J (eds) Arabidopsis protocols. Humana Press, Totowa, pp 259–266

    Google Scholar 

  • Bienert G, Thorsen M, Schüssler M, Nilsson H, Wagner A, Tamás M, Jahn T (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol 6:1–15

    Article  Google Scholar 

  • Cabello-Hurtado F, Ramos J (2004) Isolation and functional analysis of the glycerol permease activity of two new nodulin-like intrinsic proteins from salt stressed roots of the halophyte Atriplex nummularia. Plant Sci 166:633–640

    Article  CAS  Google Scholar 

  • Chaumont F, Barrieu F, Jung R, Chrispeels MJ (2000) Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity. Plant Physiol 122:1025–1034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chiba Y, Mitani N, Yamaji N, Ma JF (2009) HvLsi1 is a silicon influx transporter in barley. Plant J 57:810–818

    Article  CAS  PubMed  Google Scholar 

  • Dannel F, Pfeffer H, Romheld V (2000) Characterization of root boron pools, boron uptake and boron translocation in sunflower using the stable isotopes 10B and 11B. Aust J Plant Physiol 27:397–405

    CAS  Google Scholar 

  • Dannel F, Pfeffer H, Romheld V (2002) Update on boron in higher plants—uptake, primary translocation and compartmentation. Plant Biol 4:193–204

    Article  CAS  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and [gamma]-glutamylcysteine synthetase expression. Nat Biotech 20:1140–1145

    Article  CAS  Google Scholar 

  • Dordas C, Chrispeels MJ, Brown PH (2000) Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiol 124:1349–1361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fetter K, Van Wilder V, Moshelion M, Chaumont F (2004) Interactions between plasma membrane aquaporins modulate their water channel activity. Plant Cell 16:215–228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fitzpatrick KL, Reid RJ (2009) The involvement of aquaglyceroporins in transport of boron in barley roots. Plant Cell Environ 32:1357–1365

    Article  CAS  PubMed  Google Scholar 

  • Garnett TP, Tester MA, Nable RO (1993) The control of boron accumulation by two genotypes of wheat. Plant Soil 155:305–308

    Article  Google Scholar 

  • Gerbeau P, Güclü J, Ripoche P, Maurel C (1999) Aquaporin nt-TIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solutes. Plant J 18:577–587

    Article  CAS  PubMed  Google Scholar 

  • Hanaoka H, Fujiwara T (2007) Channel-mediated boron transport in rice. Plant Cell Physiol 48:S227

    Google Scholar 

  • Hanba YT, Shibasaka M, Hayashi Y, Hayakawa T, Kasamo K, Terashima I, Katsuhara M (2004) Overexpression of the barley aquaporin HvPIP2;1 increases internal CO2 conductance and CO2 assimilation in the leaves of transgenic rice plants. Plant Cell Physiol 45:521–529

    Article  CAS  PubMed  Google Scholar 

  • Hayes JE, Reid R (2004) Boron tolerance in Barley is mediated by efflux of boron from the roots. Plant Physiol 136:3376–3382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Isayenkov SV, Maathuis FJM (2008) The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake. FEBS Lett 582:1625–1628

    Article  CAS  PubMed  Google Scholar 

  • Kamiya T, Tanaka M, Mitani N, Ma JF, Maeshima M, Fujiwara T (2009) NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana. J Biol Chem 284:2114–2120

    Article  CAS  PubMed  Google Scholar 

  • Kammerloher W, Fischer U, Piechottka GP, Schäffner AR (1994) Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system. Plant J 6:187–199

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Miwa K, Takano J, Wada M, Fujiwara T (2009) Highly boron deficiency-tolerant plants generated by enhanced expression of NIP5;1, a boric acid channel. Plant Cell Physiol 50:58–66

    Article  CAS  PubMed  Google Scholar 

  • Li G, Zhang M, Cai W, Sun W, Su W (2008) Characterization of OsPIP2;7, a water channel protein in rice. Plant Cell Physiol 49:1851–1858

    Article  CAS  PubMed  Google Scholar 

  • Li R, Ago Y, Liu W, Mitani N, Feldmann J, McGrath SP, Ma JF, Zhao F (2009) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150:2071–2080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Z, Shen J, Carbrey JM, Mukhopadhyay R, Agre P, Rosen BP (2002) Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci 99:6053–6058

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Loomis WD, Durst RW (1992) Chemistry and biology of boron. Biofactors 3:229–239

    CAS  PubMed  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu X, Su Y, McGrath SP, Zhao F (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci 105:9931–9935

    Article  CAS  PubMed  Google Scholar 

  • Maciaszczyk-Dziubinska E, Migdal I, Migocka M, Bocer T, Wysocki R (2010) The yeast aquaglyceroporin Fps1p is a bidirectional arsenite channel. FEBS Lett 584:726–732

    Article  CAS  PubMed  Google Scholar 

  • Marone M, Mozzetti S, De Ritis D, Pierelli L, Scambia G (2001) Semi-quantitative RT-PCR analysis to assess the expression levels of multiple transcripts from the same sample. Biol Proced 3:19–25

    Article  CAS  Google Scholar 

  • Matoh T (1997) Boron in plant cell walls. Plant Soil 193:59–70

    Article  CAS  Google Scholar 

  • Maurel C, Verdoucq L, Luu D, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624

    Article  CAS  PubMed  Google Scholar 

  • Mitani N, Chiba Y, Yamaji N, Ma JF (2009) Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice. Plant Cell 21:2133–2142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mitani-Ueno N, Yamaji N, Zhao F, Ma JF (2011) The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. J Exp Bot 62:4391–4398

    Article  CAS  PubMed  Google Scholar 

  • Miwa K, Takano J, Fujiwara T (2006) Improvement of seed yields under boron-limiting conditions through overexpression of BOR1, a boron transporter for xylem loading, in Arabidopsis thaliana. Plant J 46:1084–1091

    Article  CAS  PubMed  Google Scholar 

  • Miwa K, Takano J, Omori H, Seki M, Shinozaki K, Fujiwara T (2007) Plants tolerant of high boron levels. Science 318:1417

    Article  CAS  PubMed  Google Scholar 

  • Mosa KA, Kumar K, Chhikara S, Joseph M, Liu Z, Musante C, White JC, Dhankher OP (2012) Members of rice plasma membrane intrinsic protein subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Res 21:1265–1277

    Article  CAS  PubMed  Google Scholar 

  • Moshelion M, Becker D, Biela A, Uehlein N, Hedrich R, Otto B, Levi H, Moran N, Kaldenhoff R (2002) Plasma membrane aquaporins in the motor cells of Samanea saman: diurnal and circadian regulation. Plant Cell 14:727–739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nable RO, Bañuelos GS, Paull JG (1997) Boron toxicity. Plant Soil 193:181–198

    Article  CAS  Google Scholar 

  • Nakagawa Y, Hanaoka H, Kobayashi M, Miyoshi K, Miwa K, Fujiwara T (2007) Cell-type specificity of the expression of OsBOR1, a rice efflux boron transporter gene, is regulated in response to boron availability for efficient boron uptake and xylem loading. Plant Cell 19:2624–2635

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oertli JJ, Kohl HC (1961) Some considerations about the tolerance of various plant species to excessive supplies of boron. Soil Sci 92:243–247

    Article  CAS  Google Scholar 

  • Pang Y, Li L, Ren F, Lu P, Wei P, Cai J, Xin L, Zhang J, Chen J, Wang X (2010) Overexpression of the tonoplast aquaporin AtTIP5;1 conferred tolerance to boron toxicity in Arabidopsis. J Genet Genomics 37:389–397

    Article  CAS  PubMed  Google Scholar 

  • Ralston NV, Hunt CD (2001) Diadenosine phosphates and S-adenosylmethionine: novel boron binding biomolecules detected by capillary electrophoresis. Biochim Biophys Acta 1527:20–30

    Article  CAS  PubMed  Google Scholar 

  • Reid R (2007) Identification of boron transporter genes likely to be responsible for tolerance to boron toxicity in wheat and barley. Plant Cell Physiol 48:1673–1678

    Article  CAS  PubMed  Google Scholar 

  • Reid R, Fitzpatrick K (2009) Influence of leaf tolerance mechanisms and rain on boron toxicity in barley and wheat. Plant Physiol 151:413–420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46:1568–1577

    Article  CAS  PubMed  Google Scholar 

  • Schnurbusch T, Hayes J, Hrmova M, Baumann U, Ramesh SA, Tyerman SD, Langridge P, Sutton T (2010) Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1. Plant Physiol 153:1706–1715

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Siefritz F, Otto B, Bienert GP, Van Der Krol A, Kaldenhoff R (2004) The plasma membrane aquaporin NtAQP1 is a key component of the leaf unfolding mechanism in tobacco. Plant J 37:147–155

    Article  CAS  PubMed  Google Scholar 

  • Sutton T, Baumann U, Hayes J, Collins NC, Shi B, Schnurbusch T, Hay A, Mayo G, Pallotta M, Tester M, Langridge P (2007) Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318:1446–1449

    Article  CAS  PubMed  Google Scholar 

  • Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos Z, Miwa K, Hayashi H, Yoneyama T, Fujiwara T (2002) Arabidopsis boron transporter for xylem loading. Nature 420:337–340

    Article  CAS  PubMed  Google Scholar 

  • Takano J, Wada M, Ludewig U, Schaaf G, Wirén NV, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509

    Article  PubMed Central  PubMed  Google Scholar 

  • Tanaka M, Wallace IS, Takano J, Roberts DM, Fujiwara T (2008) NIP6;1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis. Plant Cell 20:2860–2875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wallace IS, Roberts DM (2004) Homology modeling of representative subfamilies of arabidopsis major intrinsic proteins classification based on the aromatic/arginine selectivity filter. Plant Physiol 135:1059–1068

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weig A, Deswarte C, Chrispeels MJ (1997) The major intrinsic protein family of Arabidopsis has 23 members that form three distinct groups with functional aquaporins in each group. Plant Physiol 114:1347–1357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wimmer MA, Mühling KH, Läuchli A, Brown PH, Gold-bach HE (2002) Boron toxicity: the importance of soluble boron. In: Gold- bach HE, Rerkasem B, Wimmer MA, Brown PH, Bell RW (eds) Boron in plant and animal nutrition. Kluwer, New York, pp 241–253

    Chapter  Google Scholar 

  • Yamada S, Katsuhara M, Kelly WB, Michalowski CB, Bohnert HJ (1995) A family of transcripts encoding water channel proteins: tissue-specific expression in the common ice plant. Plant Cell 7:1129–1142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao F, Ago Y, Mitani N, Li R, Su Y, Yamaji N, McGrath SP, Ma JF (2010) The role of the rice aquaporin Lsi1 in arsenite efflux from roots. New Phytol 186:392–399

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are highly thankful to Dr. Barry Rosen for providing the HD9 yeast mutant strain. This research was partly supported by a grant (GAID #4808) from the Ministry of Higher Education and Scientific Research in Egypt through the Egyptian Cultural and Educational Bureau, Washington DC to OPD and KAM (GM:714) and a Hatch grant (MAS00401) from the USDA to OPD via the University of Massachusetts Amherst. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om Parkash Dhankher.

Additional information

K. Kumar, and K. A. Mosa contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 81 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, K., Mosa, K.A., Chhikara, S. et al. Two rice plasma membrane intrinsic proteins, OsPIP2;4 and OsPIP2;7, are involved in transport and providing tolerance to boron toxicity. Planta 239, 187–198 (2014). https://doi.org/10.1007/s00425-013-1969-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-1969-y

Keywords

Navigation