Skip to main content
Log in

Identification of miRNAs and miRNA-mediated regulatory pathways in Carica papaya

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Plant microRNAs (miRNAs) post-transcriptionally regulate target gene expression to modulate growth and development and biotic and abiotic stress responses. By analyzing small RNA deep sequencing data in combination with the genome sequence, we identified 75 conserved miRNAs and 11 novel miRNAs. Their target genes were also predicted. For most conserved miRNAs, the miRNA-target pairs were conserved across plant species. In addition to these conserved miRNA-target pairs, we also identified some papaya-specific miRNA-target regulatory pathways. Both miR168 and miR530 target the Argonaute 1 gene, indicating a second autoregulatory mechanism for miRNA regulation. A non-conserved miRNA was mapped within an intron of Dicer-like 1 (DCL1), suggesting a conserved homeostatic autoregulatory mechanism for DCL1 expression. A 21-nt miRNA triggers secondary siRNA production from its target genes, nucleotide-binding site leucine-rich repeat protein genes. Certain phased-miRNAs were processed from their conserved miRNA precursors, indicating a putative miRNA evolution mechanism. In addition, we identified a Carica papaya-specific miRNA that targets an ethylene receptor gene, implying its function in the ethylene signaling pathway. This work will also advance our understanding of miRNA functions and evolution in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

miRNA:

microRNA

DCL1:

Dicer-like 1

AGO:

Argonaute

SE:

Serrate

CPL1:

C-terminal Domain Phosphatase-like

HEN1:

Hua Enhancer 1

RISC:

RNA-induced silencing complex

tasiRNAs:

Transacting siRNA

HYL1:

Hyponastic leaves 1

APS:

ATP sulfurylase

SULTR:

Sulfate transporter

References

  • Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357–3365

    Article  PubMed  CAS  Google Scholar 

  • Allen E, Xie Z, Gustafson AM, Carrington JC (2005) MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    Article  PubMed  CAS  Google Scholar 

  • Aryal R, Yang X, Yu Q, Sunkar R, Li L, Ming R (2012) Asymmetric purine-pyrimidine distribution in cellular small RNA population of papaya. BMC Genomics 13:682

    Article  PubMed  CAS  Google Scholar 

  • Axtell MJ, Jan C, Rajagopalan R, Bartel DP (2006) A two-hit trigger for siRNA biogenesis in plants. Cell 127:565–577

    Article  PubMed  CAS  Google Scholar 

  • Blevins T, Rajeswaran R, Shivaprasad PV, Beknazariants D, Si-Ammour A, Park HS, Vazquez F, Robertson D, Meins F Jr, Hohn T, Pooggin MM (2006) Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res 34:6233–6246

    Article  PubMed  CAS  Google Scholar 

  • Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Article  PubMed  CAS  Google Scholar 

  • Chen HM, Chen LT, Patel K, Li YH, Baulcombe DC, Wu SH (2010) 22-nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Natl Acad Sci USA 107:15269–15274

    Article  PubMed  CAS  Google Scholar 

  • Cuperus JT, Carbonell A, Fahlgren N, Garcia-Ruiz H, Burke RT, Takeda A, Sullivan CM, Gilbert SD, Montgomery TA, Carrington JC (2010) Unique functionality of 22 nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat Struct Mol Biol 17:997–1003

    Article  PubMed  CAS  Google Scholar 

  • Eulalio A, Huntzinger E, Izaurralde E (2008) Getting to the root of miRNA-mediated gene silencing. Cell 132:9–14

    Article  PubMed  CAS  Google Scholar 

  • Fang Y, Spector DL (2007) Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr Biol 17:818–823

    Article  PubMed  CAS  Google Scholar 

  • Flynt AS, Lai EC (2008) Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet 9:831–842

    Article  PubMed  CAS  Google Scholar 

  • Gandikota M, Birkenbihl RP, Höhmann S, Cardon GH, Saedler H, Huijser P (2007) The miRNA156/157 recognition element in the 3′UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J 49:683–693

    Article  PubMed  CAS  Google Scholar 

  • Garcia D (2008) A miRacle in plant development: role of microRNAs in cell differentiation and patterning. Semin Cell Dev Biol 19:586–595

    Article  PubMed  CAS  Google Scholar 

  • Gardner PP, Daub J, Tate J, Moore BL, Osuch IH, Griffiths-Jones S, Finn RD, Nawrocki EP, Kolbe DL, Eddy SR, Bateman A (2011) Rfam: Wikipedia, clans and the “decimal” release. Nucleic Acids Res 39:D141–D145

    Article  PubMed  CAS  Google Scholar 

  • Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144

    Article  PubMed  CAS  Google Scholar 

  • Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376–1386

    Article  PubMed  CAS  Google Scholar 

  • Harvey JJ, Lewsey MG, Patel K, Westwood J, Heimstädt S, Carr JP, Baulcombe DC (2011) An antiviral defense role of AGO2 in plants. PLoS ONE 6(1):e14639

    Article  PubMed  CAS  Google Scholar 

  • Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431

    Article  PubMed  CAS  Google Scholar 

  • Howell MD, Fahlgren N, Chapman EJ, Cumbie JS, Sullivan CM, Givan SA, Kasschau KD, Carrington JC (2007) Genome-wide analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 pathway in Arabidopsis reveals dependency on miRNA- and tasiRNA-directed targeting. Plant Cell 19:926–942

    Article  PubMed  CAS  Google Scholar 

  • Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9:22–32

    Article  PubMed  CAS  Google Scholar 

  • Jeong DH, Park S, Zhai J, Gurazada SG, De Paoli E, Meyers BC, Green PJ (2011) Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage. Plant Cell 23:4185–4207

    Article  PubMed  CAS  Google Scholar 

  • Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H, Dalmay T (2009) Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J 57:313–321

    Article  PubMed  CAS  Google Scholar 

  • Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385

    Article  PubMed  CAS  Google Scholar 

  • Kurihara Y, Takashi Y, Watanabe Y (2006) The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12:206–212

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    Article  PubMed  CAS  Google Scholar 

  • Lertpanyasampatha M, Gao L, Kongsawadworakul P, Viboonjun U, Chrestin H, Liu R, Chen X, Narangajavana J (2012) Genome-wide analysis of microRNAs in rubber tree (Hevea brasiliensis L.) using high-throughput sequencing. Planta 236:437–445

    Article  PubMed  CAS  Google Scholar 

  • Li J, Yang Z, Yu B, Liu J, Chen X (2005) Methylation protects miR-Nas and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr Biol 15:1501–1507

    Article  PubMed  CAS  Google Scholar 

  • Li R, Li Y, Kristiansen K, Wang J (2008a) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714

    Article  PubMed  CAS  Google Scholar 

  • Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Lu XY, Cui X, Jin H, Zhu JK (2008b) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20:2238–2251

    Article  PubMed  CAS  Google Scholar 

  • Li H, Deng Y, Wu T, Subramanian S, Yu O (2010) Misexpression of miR482, miR1512, and miR1515 increases soybean nodulation. Plant Physiol 153:1759–1770

    Article  PubMed  CAS  Google Scholar 

  • Liang G, Yang F, Yu D (2010) MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J 62:1046–1057

    PubMed  CAS  Google Scholar 

  • Liang G, He H, Li Y, Yu D (2012a) A new strategy for construction of artificial miRNA vectors in Arabidopsis. Planta 235:1421–1429

    Article  PubMed  CAS  Google Scholar 

  • Liang G, He H, Yu D (2012b) Identification of nitrogen starvation-responsive microRNAs in Arabidopsis thaliana. PLoS ONE 7:e48951

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Song Y, Chen Z, Yu D (2009) Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiol Plant 136:223–236

    Article  PubMed  CAS  Google Scholar 

  • Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056

    Article  PubMed  CAS  Google Scholar 

  • Mallory A, Vaucheret H (2010) Form, function, and regulation of ARGONAUTE proteins. Plant Cell 22:3879–3889

    Article  PubMed  CAS  Google Scholar 

  • Manavella PA, Hagmann J, Ott F, Laubinger S, Franz M, Macek B, Weigel D (2012a) Fast-forward genetics identifies plant CPL phosphatases as regulators of miRNA processing factor HYL1. Cell 151:859–870

    Article  PubMed  CAS  Google Scholar 

  • Manavella PA, Koenig D, Weigel D (2012b) Plant secondary siRNA production determined by microRNA-duplex structure. Proc Natl Acad Sci USA 109:2461–2466

    Article  PubMed  CAS  Google Scholar 

  • Marin E, Jouannet V, Herz A, Lokerse AS, Weijers D, Vaucheret H, Nussaume L, Crespi MD, Maizel A (2010) miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell 22:1104–1117

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D et al (2008) Criteria for annotation of plant microRNAs. Plant Cell 20:3186–3190

    Article  PubMed  CAS  Google Scholar 

  • Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    Article  PubMed  CAS  Google Scholar 

  • Montgomery TA, Yoo SJ, Fahlgren N, Gilbert SD, Howell MD, Sullivan CM, Alexander A, Nguyen G, Allen E, Ahn JH, Carrington JC (2008) AGO1-miR173 complex initiates phased siRNA formation in plants. Proc Natl Acad Sci USA 105:20055–20062

    Article  PubMed  CAS  Google Scholar 

  • Moxon S, Jing R, Szittya G, Schwach F, Rusholme Pilcher RL, Moulton V, Dalmay T (2008) Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res 18:1602–1609

    Article  PubMed  CAS  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  PubMed  CAS  Google Scholar 

  • Pang M, Woodward AW, Agarwal V, Guan X, Ha M, Ramachandran V, Chen X, Triplett BA, Stelly DM, Chen ZJ (2009) Genome-wide analysis reveals rapid and dynamic changes in miRNA and siRNA sequence and expression during ovule and fiber development in allotetraploid cotton (Gossypium hirsutum L.). Genome Biol 10:R122

    Article  PubMed  Google Scholar 

  • Pedersen I, David M (2008) MicroRNAs in the immune response. Cytokine 43:391–394

    Article  PubMed  CAS  Google Scholar 

  • Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425

    Article  PubMed  CAS  Google Scholar 

  • Reyes JL, Chua NH (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49:592–606

    Article  PubMed  CAS  Google Scholar 

  • Schwarz S, Grande AV, Bujdoso N, Saedler H, Huijser P (2008) The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol Biol 67:183–195

    Article  PubMed  CAS  Google Scholar 

  • Shivaprasad PV, Chen HM, Patel K, Bond DM, Santos BA, Baulcombe DC (2012) A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 24:859–874

    Article  PubMed  CAS  Google Scholar 

  • Sobkowiak L, Karlowsk W, Jarmolowski A, Szweykowska-Kulinska Z (2012) Non-canonical processing of Arabidopsis pri-miR319a/b/c generates additional microRNAs to target one RAP2.12 mRNA isoform. Front Plant Sci 3:46

    PubMed  CAS  Google Scholar 

  • Song QX, Liu YF, Hu XY, Zhang WK, Ma B, Chen SY, Zhang JS (2011) Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing. BMC Plant Biol 11:5

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309

    Article  PubMed  CAS  Google Scholar 

  • Várallyay É, Válóczi A, Ágyi Á, Burgyán J, Havelda Z (2010) Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation. EMBO J 29:3507–3519

    Article  PubMed  Google Scholar 

  • Vaucheret H, Vazquez F, Crété P, Bartel DP (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18:1187–1197

    Article  PubMed  CAS  Google Scholar 

  • Voinnet O (2008) Post-transcriptional RNA silencing in plant-microbe interactions: a touch of robustness and versatility. Curr Opin Plant Biol 11:464–470

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Wang L, Mao Y, Cai W, Xue H (2005) Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216

    Article  PubMed  CAS  Google Scholar 

  • Williams L, Grigg SP, Xie M, Christensen S, Fletcher JC (2005) Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development 132:3657–3668

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539–3547

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Ebright YW, Yu B, Chen X (2006) HEN1 recognizes 21–24 nt small RNA duplexes and deposits a methyl group onto the 2′OH of the 3′ terminal nucleotide. Nucleic Acids Res 34:667–675

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Liang G, Liu D, Yu D (2009) Arabidopsis miR396 mediates the development of leaves and flowers in transgenic tobacco. J Plant Biol 52:475–481

    Article  CAS  Google Scholar 

  • Zhai J, Jeong DH, De Paoli E, Park S, Rosen BD, Li Y, González AJ, Yan Z, Kitto SL, Grusak MA, Jackson SA, Stacey G, Cook DR, Green PJ, Sherrier DJ, Meyers BC (2011) MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev 25:2540–2553

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA (2006) Conservation and divergence of plant microRNA genes. Plant J 46:243–259

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Chia JM, Kumari S, Stein JC, Liu Z, Narechania A, Maher CA, Guill K, McMullen MD, Ware D (2009) A genome-wide characterization of microRNA genes in maize. PLoS Genet 5:e1000716

    Article  PubMed  Google Scholar 

  • Zhang W, Gao S, Zhou X, Xia J, Chellappan P, Zhou X, Zhang X, Jin H (2010) Multiple distinct small RNAs originate from the same microRNA precursors. Genome Biol 11:R81

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China [Grant No. 31100186], the West Light Foundation of CAS, and the CAS 135 program [XTBG-F04].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diqiu Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 77 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, G., Li, Y., He, H. et al. Identification of miRNAs and miRNA-mediated regulatory pathways in Carica papaya . Planta 238, 739–752 (2013). https://doi.org/10.1007/s00425-013-1929-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-1929-6

Keywords

Navigation