Skip to main content
Log in

Inhibition of chlorophyll biosynthesis at the protochlorophyllide reduction step results in the parallel depletion of Photosystem I and Photosystem II in the cyanobacterium Synechocystis PCC 6803

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

In most oxygenic phototrophs, including cyanobacteria, two independent enzymes catalyze the reduction of protochlorophyllide to chlorophyllide, which is the penultimate step in chlorophyll (Chl) biosynthesis. One is light-dependent NADPH:protochlorophyllide oxidoreductase (LPOR) and the second type is dark-operative protochlorophyllide oxidoreductase (DPOR). To clarify the roles of both enzymes, we assessed synthesis and accumulation of Chl-binding proteins in mutants of cyanobacterium Synechocystis PCC 6803 that either completely lack LPOR or possess low levels of the active enzyme due to its ectopic regulatable expression. The LPOR-less mutant grew photoautotrophically in moderate light and contained a maximum of 20 % of the wild-type (WT) Chl level. Both Photosystem II (PSII) and Photosystem I (PSI) were reduced to the same degree. Accumulation of PSII was mostly limited by the synthesis of antennae CP43 and especially CP47 as indicated by the accumulation of reaction center assembly complexes. The phenotype of the LPOR-less mutant was comparable to the strain lacking DPOR that also contained <25 % of the wild-type level of PSII and PSI when cultivated under light-activated heterotrophic growth conditions. However, in the latter case, we detected no reaction center assembly complexes, indicating that synthesis was almost completely inhibited for all Chl-proteins, including the D1 and D2 proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BN:

Blue native

Chl:

Chlorophyll

Chlide:

Chlorophyllide

CN:

Clear native

CP43a/CP43b:

Two forms of unassembled CP43

DPOR:

Dark-operative protochlorophyllide oxidoreductase

LAHG:

Light-activated heterotrophic growth

LL:

Low light

LPOR:

Light-dependent protochlorophyllide oxidoreductase

NL:

Normal light

Pchlide:

Protochlorophyllide

pD1/iD1:

Precursor/intermediate form of D1

PSI:

Photosystem I

PSI(1):

PSI monomer

PSI(3):

PSI trimer

PSII:

Photosystem II

RC:

PSII reaction center complex

RC* and RCa:

Reaction center complexes lacking antennae CP47 and CP43 and accumulating in mutants unable to synthesize CP47

RC47:

PSII monomer lacking CP43

RCC1:

PSII monomer

RCC2:

PSII dimer

RCCS1:

Supercomplex containing PSII and PSI proteins

U.P.:

Unassembled proteins

WT:

Wild-type

References

  • Burke DH, Hearst JE, Sidow A (1993) Early evolution of photosynthesis: clues from nitrogenase and chlorophyll iron proteins. Proc Natl Acad Sci USA 90:7134–7138

    Article  PubMed  CAS  Google Scholar 

  • Dobáková M, Sobotka R, Tichý M, Komenda J (2009) The Psb28 protein is involved in the biogenesis of the photosystem II inner antenna CP47 (PsbB) in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 149:1076–1086

    PubMed  Google Scholar 

  • Elhai J, Wolk CP (1988) Conjugal transfer of DNA to cyanobacteria. Methods Enzymol 167:747–754

    Article  PubMed  CAS  Google Scholar 

  • Ford C, Mitchell S, Wang W (1983) Characterization of NADPH:protochlorophyllide oxidoreductase in the y-7 and pc-1 mutants of Chlamydomonas reinhardtii. Mol Gen Genet 192:290–292

    Article  CAS  Google Scholar 

  • Fujita Y (1996) Protochlorophyllide reduction: a key step in the greening of plants. Plant Cell Physiol 37:411–421

    Article  PubMed  CAS  Google Scholar 

  • Fujita Y, Bauer CE (2003) The light-independent protochlorophyllide reductase: a nitrogenase-like enzyme catalyzing a key reaction for greening in the dark. In: Kadish KM, Smith KM, Guilard R (eds) Porphyrin handbook, vol 13., Chlorophylls and bilins: biosynthesis, synthesis, and degradationAcademic Press, San Diego, pp 109–156

    Chapter  Google Scholar 

  • Fujita Y, Murakami A, Ohki K (1990) Regulation of the stoichiometry of thylakoid components in the photosynthetic system of cyanophytes: model experiments showing that control of the synthesis or supply of chlorophyll a can change the stoichiometric relationship between the two photosystems. Plant Cell Physiol 31:145–153

    CAS  Google Scholar 

  • Fujita Y, Takali H, Hase T (1998) Cloning of the gene encoding a protochlorophyllide reductase: the physiological significance of the co-existence of light-dependent and -independent protochlorophyllide reduction systems in the cyanobacterium Plectonema boryanum. Plant Cell Physiol 39:177–185

    Article  PubMed  CAS  Google Scholar 

  • Goto T, Aoki R, Minamizaki K, Fujita Y (2010) Functional differentiation of two analogous coproporphyrinogen III oxidases for heme and chlorophyll biosynthesis pathways in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 51:650–663

    Article  PubMed  CAS  Google Scholar 

  • He Q, Brune D, Nierman R, Vermaas W (1998) Chlorophyll a synthesis upon interruption and deletion of por coding for the light-dependent NADPH:protochlorophyllide oxidoreductase in a photosystem-I-less/chlL- strain of Synechocystis sp. PCC 6803. Eur J Biochem 253:161–172

    Article  PubMed  CAS  Google Scholar 

  • Heyes DJ, Hunter CN (2005) Making light work of enzyme catalysis: protochlorophyllide oxidoreductase. Trends Biochem Sci 30:642–649

    Article  PubMed  CAS  Google Scholar 

  • Heyes DJ, Hunter CN, van Stokkum IHM, van Grondelle R, Groot ML (2003) Ultrafast enzymatic reaction dynamics in protochlorophyllide oxidoreductase. Nat Struct Biol 10:491–492

    Article  PubMed  CAS  Google Scholar 

  • Hihara Y, Sonoike K, Ikeuchi M (1998) A novel gene, pmgA, specifically regulates photosystem stoichiometry in the cyanobacterium Synechocystis species PCC 6803 in response to high light. Plant Physiol 117:1205–1216

    Article  PubMed  CAS  Google Scholar 

  • Kada S, Koike H, Satoh K, Hase T, Fujita Y (2003) Arrest of chlorophyll synthesis and differential decrease of photosystems I and II in a cyanobacterial mutant lacking light-independent protochlorophyllide reductase. Plant Mol Biol 51:225–235

    Article  PubMed  CAS  Google Scholar 

  • Kauss D, Bischof S, Steiner S, Apel K, Meskauskiene R (2012) FLU, a negative feedback regulator of tetrapyrrole biosynthesis, is physically linked to the final steps of the Mg2+-branch of this pathway. FEBS Lett 586:211–216

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Eichacker LA, Rudiger W, Mullet J (1994) Chlorophyll regulates accumulation of the plastid-encoded chlorophyll proteins P700 and D1 by increasing stability. Plant Physiol 104:907–916

    Article  PubMed  CAS  Google Scholar 

  • Komenda J, Reisinger V, Müller BC, Dobáková M, Granvogl B, Eichacker LA (2004) Accumulation of the D2 protein is a key regulatory step for assembly of the photosystem II reaction center complex in Synechocystis PCC 6803. J Biol Chem 279:48620–48629

    Article  PubMed  CAS  Google Scholar 

  • Komenda J, Kuviková S, Granvogl B, Eichacker LA, Diner BA, Nixon PJ (2007) Cleavage after residue Ala352 in the C-terminal extension is an early step in the maturation of the D1 subunit of photosystem II in Synechocystis PCC 6803. Biochim Biophys Acta 1767:829–837

    Article  PubMed  CAS  Google Scholar 

  • Komenda J, Nickelsen J, Eichacker LA, Tichý M, Prášil O, Nixon PJ (2008) The cyanobacterial homologue of HCF136/YCF48 is a component of an early photosystem II assembly complex and is important for both the efficient assembly and repair of photosystem II in Synechocystis sp. PCC6803. J Biol Chem 283:22390–22399

    Article  PubMed  CAS  Google Scholar 

  • Komenda J, Knoppová J, Kopečná J, Sobotka R, Halada P, Yu J, Nickelsen J, Boehm M, Nixon PJ (2012) The Psb27 assembly factor binds to the CP43 complex of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 158:476–486

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Lee HJ, Shin MK, Ryu WS (2004) Versatile PCR-mediated insertion or deletion mutagenesis. Biotechniques 36:398–399

    PubMed  CAS  Google Scholar 

  • Li J, Timko MP (1996) The pc-1 phenotype of Chlamydomonas reinhardtii results from a deletion mutation in the nuclear gene for NADPH:protochlorophyllide oxidoreductase. Plant Mol Biol 30:15–37

    Article  PubMed  CAS  Google Scholar 

  • Masuda T (2008) Recent overview of the Mg branch of the tetrapyrrole biosynthesis leading to chlorophylls. Photosynth Res 96:121–143

    Article  PubMed  CAS  Google Scholar 

  • Masuda T, Takamiya K (2004) Novel insight into the enzymology, regulation and physiological functions of light-dependent protochlorophyllide oxidoreductase in angiosperms. Photosynth Res 81:1–29

    Article  PubMed  CAS  Google Scholar 

  • Minamizaki K, Mizoguchi T, Goto T, Tamiaki H, Fujita Y (2007) Identification of two homologous genes, chlAI and chlAII, that are differentially involved in isocyclic ring formation of chlorophyll a in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 283:2684–2692

    Article  PubMed  Google Scholar 

  • Misra HS, Tuli TS (2000) Differential expression of photosynthesis and nitrogen fixation genes in the cyanobacterium Plectonema boryanum. Plant Physiol 122:731–736

    Article  PubMed  CAS  Google Scholar 

  • Müller B, Eichacker LA (1999) Assembly of the D1 precursor in monomeric photosystem II reaction center precomplexes precedes chlorophyll a-triggered accumulation of reaction center II in barley etioplasts. Plant Cell 11:2365–2377

    PubMed  Google Scholar 

  • Muramatsu M, Sonoike K, Hihara Y (2009) Mechanism of downregulation of photosystem I content under high-light conditions in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 155:989–996

    Article  PubMed  CAS  Google Scholar 

  • Pinto FL, Thapper A, Sontheim W, Lindblad P (2009) Analysis of current and alternative phenol based RNA extraction methodologies for cyanobacteria. BMC Mol Biol 10:79

    Article  PubMed  Google Scholar 

  • Porra RJ, Thompson WA, Kriedmann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Qi QG, Hao M, Ng WO, Slater SC, Baszis SR, Weiss JD, Valentin HE (2005) Application of the Synechococcus nirA promoter to establish an inducible expression system for engineering the Synechocystis tocopherol pathway. Appl Env Microbiol 71:5678–5684

    Article  CAS  Google Scholar 

  • Reinbothe C, El Bakkouri M, Buhr F, Muraki N, Nomata J, Kurisu G, Fujita Y, Reinbothe S (2010) Chlorophyll biosynthesis: spotlight on protochlorophyllide reduction. Trends Plant Sci 15:614–624

    Article  PubMed  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Rüdiger W (2003) The last steps of chlorophyll synthesis. In: Kadish KM, Smith KM, Guilard R (eds) Porphyrin handbook, vol 13., Chlorophylls and bilins: biosynthesis, synthesis, and degradationAcademic Press, San Diego, pp 71–108

    Chapter  Google Scholar 

  • Schägger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231

    Article  PubMed  Google Scholar 

  • Sobotka R, Dühring U, Komenda J, Peter E, Gardian Z, Tichy M, Grimm B, Wilde A (2008) Importance of the cyanobacterial Gun4 protein for chlorophyll metabolism and assembly of photosynthetic complexes. J Biol Chem 283:25794–25802

    Article  PubMed  CAS  Google Scholar 

  • Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58:321–346

    Article  PubMed  CAS  Google Scholar 

  • Wittig I, Schägger H (2008) Features and applications of blue-native and clear-native electrophoresis. Proteomics 8:3974–3990

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Vermaas WF (1995) Light-dependent chlorophyll a biosynthesis upon chlL deletion in wild-type and photosystem I-less strains of the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol 29:933–945

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki S, Nomata J, Fujita Y (2006) Differential operation of dual protochlorophyllide reductases for chlorophyll biosynthesis in response to environmental oxygen levels in the cyanobacterium Leptolyngbya boryana. Plant Physiol 142:911–922

    Article  PubMed  CAS  Google Scholar 

  • Yang ZM, Bauer CE (1990) Rhodobacter capsulatus genes involved in early steps of the bacteriochlorophyll biosynthetic pathway. J Bacteriol 172:5001–5010

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Henry Valentin for providing pCER20 plasmid, C. Neil Hunter (Sheffield University, UK) for anti-LPOR and Peter Nixon (Imperial College L ondon, UK) for the WT strain and the anti-YCF48 antibody. This work was supported by projects Algatech (CZ.1.05/2.1.00/03.0110), RVO61388971, by projects P501/10/1000 and P501/12/G055 of the Grant Agency of the Czech Republic, and by a project 073/2010/P-PřF of the Grant Agency of the University of South Bohemia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Komenda.

Additional information

A contribution to the Special Issue on Evolution and Biogenesis of Chloroplasts and Mitochondria.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 176 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopečná, J., Sobotka, R. & Komenda, J. Inhibition of chlorophyll biosynthesis at the protochlorophyllide reduction step results in the parallel depletion of Photosystem I and Photosystem II in the cyanobacterium Synechocystis PCC 6803. Planta 237, 497–508 (2013). https://doi.org/10.1007/s00425-012-1761-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1761-4

Keywords

Navigation