Skip to main content

Advertisement

Log in

Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps activation

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Increasing evidences have indicated that humic substances can induce plant growth and productivity by functioning as an environmental source of auxinic activity. Here we comparatively evaluate the effects of indole-3-acetic acid (IAA) and humic acids (HA) isolated from two different soils (Inseptsol and Ultisol) and two different organic residues (vermicompost and sewage sludge) on root development and on activities of plasmalemma and tonoplast H+ pumps from maize roots. The data show that HA isolated from these different sources as well as low IAA concentrations (10−10 and 10−15 M) improve root growth through a markedly proliferation of lateral roots along with a differential activation not only of the plasmalemma but also of vacuolar H+-ATPases and H+-pyrophosphatase. Further, the vacuolar H+-ATPase had a peak of stimulation in a range from 10−8 to 10−10 M IAA, whereas the H+-pyrophosphatase was sensitive to a much broader range of IAA concentrations from 10−3 to 10−15 M. It is proposed a complementary view of the acid growth mechanism in which a concerted activation of the plasmalemma and tonoplast H+ pumps plays a key role in the root cell expansion process driven by environment-derived molecules endowed with auxinic activity, such as that of humic substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HA:

Humic acids

H+-PPase:

Membrane-bound pyrophosphatase

IAA:

Indole-3-acetic acid

P-ATPase:

Plasma membrane H+-adenosine triphosphatase

V-ATPase:

Vacuolar H+-adenosine triphosphatase

V-PPase:

Vacuolar H+-pyrophosphatase

References

  • Atiyeh RM, Lee CA, Edwards CA, Arancon NQ, Metzger JD (2002) The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresour Technol 84:7–14

    Article  PubMed  CAS  Google Scholar 

  • Bennett AB, O’Neill SD, Spanswick RM (1984) H+-ATPase activity from storage tissue of Beta vulgaris. Plant Physiol 74:538–544

    PubMed  CAS  Google Scholar 

  • Bertosa B, Kojic´-Prodic B, Wade RC, Ramek M, Piperaki S, Tsantili-Kakoulidou A, Tomic S (2003) A new approach to predict the biological activity of molecules based on similarity of their interaction fields and the log p and log d values: application to auxins. J Chem Inf Comp Sci 43:1532–1541

    Article  CAS  Google Scholar 

  • Bhalerao RP, Eklof J, Ljung K, Marchant A, Bennett M, Sandberg G (2002) Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant J 29:325–332

    Article  PubMed  CAS  Google Scholar 

  • Blakely LM, Blakely RM, Colowit PM, Elliott DS (1988) Experimental studies on lateral root formation in radish seedling roots II. Analysis of the dose-response to exogenous auxin. Plant Physiol 87:414–419

    PubMed  CAS  Google Scholar 

  • Bottomley WB (1917) Some effects of organic-promotion substances (auximones) on the growth of Lema minor in mineral cultural solutions. Proc Royal Soc London Series B Biol Sci 89:481–505

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of micrograms quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cacco G, Dell’Agnola G (1984) Plant growth regulator activity of soluble humic complexes. Can J Soil Sci 64:225–228

    Article  CAS  Google Scholar 

  • Canellas LP, Façanha AR (2004) Chemical nature of soil humified fractions and their bioactivity. Pesq Agropec Bras 39:233–234

    Google Scholar 

  • Canellas LP, Olivares FL, Okorokova-Façanha AL, Façanha AR (2002) Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiol 130:1951–1957

    Article  PubMed  CAS  Google Scholar 

  • Canellas LP, Zandonadi DB, Médice LO, Peres LEP, Olivares FL, Façanha AR (2005) Bioatividade de substâncias húmicas – ação sobre o desenvolvimento e metabolismo das plantas. In: Canellas LP, Santos GA (eds) Humosfera: tratado preliminar sobre a química das substâncias húmicas. Campos dos Goytacazes, Rio de Janeiro, pp 238–239

    Google Scholar 

  • Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inzé D, Sandber G, Casero PJ, Benett M (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843–852

    Article  PubMed  CAS  Google Scholar 

  • Charleton WA (1991) Lateral root initiation. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 103–128

    Google Scholar 

  • Chen Y, Aviad T (1990) Effects of humic substances on plant growth. In: MacCarthy P, Clapp CE, Malcolm RL, Bloom PR (eds) Humic substances in soil and crop science selected readings. American Society of Agronomy Inc., Soil Science of America Inc., Madison, pp 161–186

    Google Scholar 

  • Chen Y, Senesi N, Schnitzer M (1977) Information provide on humic substances by E4/E6 ratios. Soil Sci Am J 41:352–358

    Article  CAS  Google Scholar 

  • Cosgrove DJ (2000) Expansive growth of plant cell walls. Plant Physiol Biochem 38:109–124

    Article  PubMed  CAS  Google Scholar 

  • Coulthup NB, Daly LH, Wiberley SE (1964) Introduction to infrared and NMR spectroscopy. Academic, New York

    Google Scholar 

  • Dolan L, Davies J (2004) Cell expansion in roots. Curr Opin Plant Biol 7:33–39

    Article  PubMed  CAS  Google Scholar 

  • Evans ML, Ishikawa H, Estelle MA (1994) Responses of Arabidopsis roots to auxin studied with high temporal resolution: comparison of wild type and auxin response mutants. Planta 194:215–222

    Article  CAS  Google Scholar 

  • Façanha AR, de Meis L (1998) Reversibility of H+-ATPase and H+-Pyrophosphatase in tonoplast vesicles from maize coleoptiles and seeds. Plant Physiol 116:1487–1495

    Article  Google Scholar 

  • Façanha AR, Façanha ALO, Olivares FL, Guridi F, Santos GA, Velloso ACX, Rumjanek VM, Brasil F, Schripsema J, Braz-filho R, Oliveira MA, Canellas LP (2002) Bioatividade de ácidos húmicos: efeito sobre o desenvolvimento radicular e sobre a bomba de prótons da membrana plasmática. Pesq Agropec Bras 37:1301–1310

    Google Scholar 

  • Fiske CF, Subbarow Y (1925) The colorometric determination of phosphorus. J Biol Chem 66:375–383

    CAS  Google Scholar 

  • Gogarten JP, Fichmann J, Braun Y, Morgan L, Styles P, Taiz SL, DeLapp K, Taiz L (1992) The use of antisense mRNA to inhibit the tonoplast H+-ATPase in carrot. Plant Cell 4:851–864

    Article  PubMed  CAS  Google Scholar 

  • Govindasmy R, Chandrasekaran S (1992) Effect of humic substances on the growth, yield, and nutrient content of sugar cane. Sci Total Environ 117/118:575–581

    Article  Google Scholar 

  • Guminski S (1968) Present days view on physiological effects induced in plant organisms by humic compounds. Soviet Soil Sci 9:1250–1255

    Google Scholar 

  • Hager A, Debus G, Edel HG, Stransky H, Serrano R (1991) Auxin induces exocytosis and rapid synthesis of a high-turnover pool of plasma-membrane H+-ATPase. Planta 185:527–537

    Article  CAS  Google Scholar 

  • Huss M, Ingenhorst G, König S, Gabel M, Dröse S, Zeeck A, Altendorf K, Wieczore H (2002) Concanamycin A, the specific inhibitor of V-ATPases, binds to the Vo subunit c. J Biol Chem 277:40544–40548

    Article  PubMed  CAS  Google Scholar 

  • Johnston CT, Aochi YO (1996) Fourier transform infrared and raman spectroscopy. In: DL Spark (ed) Methods of soil analysis. Chemical methods. American Society of Agronomy, Madison, pp 269–321

    Google Scholar 

  • Kononova MM (1966) Soil organic matter, its nature, its role in soil formation and in soil fertility. Pergamon, New York

    Google Scholar 

  • Kononova MM (1982) Materia orgánica del suelo: su naturaleza, propiedades y métodos de investigación. Oikos-tau, Barcelona

    Google Scholar 

  • Leyser O, Fitter A (1998) Roots are branching out in patches. Trends Plant Sci 3:203–204

    Article  Google Scholar 

  • Li JS, Yang HB, Peer WA, Richter G, Blakeslee J, Bandyopadhyay A, Titapiwantakun B, Undurraga S, Khodakovskaya M, Richards EL, Krizek B, Murphy AS, Gilroy S, Gaxiola R (2005) Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science 310(5745):121–125

    Article  PubMed  CAS  Google Scholar 

  • Maeshima M, Nakanishi Y, Matsuura-Endo C, Tanaka Y (1996) Proton pumps of the vacuolar membrane in growing plant cells. J Plant Res 109:119–125

    Article  CAS  Google Scholar 

  • Malamy JE, Ryan KS (2001) Environmental regulation of lateral root initiation in Arabidopsis. Plant Physiol 127:899–909

    Article  PubMed  CAS  Google Scholar 

  • Martin-Neto L, Cruvinel P, Mattoso LHC, Colnago LA (1996) Espectroscopias de infravermelho, ultravioleta-visível e pixe: alguns resultados disponíveis. In: Crestana S, Cruvinel PE, Mascarenhas S, Biscegli CI (eds) Instrumentação agropecuária: contribuições no limiar do novo século. Empresa Brasileira de Pesquisa Agropecuária, São Carlos, pp 51–90

    Google Scholar 

  • Masciandaro G, Ceccanti B, Garcia C (1999) Soil agro-ecological management: fertirrigation and vermicompost treatments. Bioresour Technol 59:199–220

    Article  Google Scholar 

  • Mato MC, Olmedo MG, Méndez J (1972) Inhibition of indoleacetic acid-oxidase by soil humic acids fractioned on sephadex. Soil Biol Biochem 4:469–473

    Article  CAS  Google Scholar 

  • Mulkey TJ, Kuzmanoff KM, Evans ML (1982) Promotion of growth and hydrogen ion efflux by auxin in roots of maize pretreated with ethylene biosynthesis inhibitors. Plant Physiol 70:186–188

    PubMed  CAS  Google Scholar 

  • Muscolo A, Cutrupi S, Nardi S (1998) IAA detection in humic substances. Soil Biol Biochem 30:1199–1201

    Article  CAS  Google Scholar 

  • Nardi S, Pizzeghello D, Muscolo A, Vianello A (2002) Physiological effects of humic substances in higher plants. Soil Biol Biochem 34:1527–1537

    Article  CAS  Google Scholar 

  • Ozolina NV, Pradedova EV, Salyaev RK (1996) Phytohormone effects on hydrolytic activity of phosphohydrolases in red beet (Beta vulgaris L.) tonoplasts. Plant Growth Regul 19:189–191

    Article  CAS  Google Scholar 

  • Padmanaban S, Lin X, Perera I, Kawamura Y, Sze H (2004) Differential expression of vacuolar H+-ATPase subunit c genes in tissues active in membrane trafficking and their roles in plant growth as revealed by RNAi. Plant Physiol 134:1514–1526

    Article  PubMed  CAS  Google Scholar 

  • Piccolo A (2001) The supramolecular structure of humic substances. Soil Sci 166:810–832

    Article  CAS  Google Scholar 

  • Pinton R, Varanini Z, Vizzoto G, Maggioni A (1992) Soil humic substances affect transport-properties of tonoplast vesicles isolated from oat roots. Plant Soil 142:203–210

    Article  CAS  Google Scholar 

  • Pizzeghello D, Nicolini G, Nardi S (2001) Hormone-like activity of humic substances in Fagus sylvaticae forests. New Phytol 151:647–657

    Article  CAS  Google Scholar 

  • Quaggiotti S, Ruperti B, Pizzeghello D, Francioso O, Tugnoli V, Nardi S (2004) Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L.). J Exp Bot 55:803–813

    Article  PubMed  CAS  Google Scholar 

  • Rayle DL, Cleland R (1992) The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol 99:1271–1274

    Article  PubMed  CAS  Google Scholar 

  • Salyaev RK, Ozolina NV, Pradedova EV (1999) Effects of exogenous phytohormones and kinetin on the hydrolytic activity of proton pumps in the tonoplast of red beet at different stages of plant development. Russ J Plant Physiol 46:1–4

    CAS  Google Scholar 

  • Schnitzer M, Gupta UC (1965) Determination of acidity in soil organic matter. Soil Sci Soc Am Proc 27:274–277

    Article  Google Scholar 

  • Schnitzer M, Poapst PA (1967) Effects of a soil humic compound on root initiation. Nature 213:598–599

    Article  CAS  Google Scholar 

  • Schnitzer M, Skinner SIM (1982) Organic matter characterization. In: American Society of Agronomy/Soil Science Society of America Agronomic Monograph (eds) Method of soil analysis, part 2. Chemical and mineralogical properties. ASA/SSSA Publishers, Madison, pp 581–597

  • Schnitzer M (1991) Soil organic matter: the next 75 years. Soil Sci 151:41–58

    Article  Google Scholar 

  • Schumacher K, Vafeados D, McCarthy M, Sze H, Wilkins T, Chory J (1999) The Arabidopsis det3 mutant reveals a central role for the vacuolar H+-ATPase in plant growth and development. Genes Dev 13:3259–3270

    Article  PubMed  CAS  Google Scholar 

  • Simpsom AJ (2002) Determining the molecular weight, aggregation, structures and interactions of natural organic matter using diffusion ordered spectroscopy. Magnet Reson Chem 40:572–582

    Google Scholar 

  • Smart LB, Vojdani F, Maeshima M, Wilkins TA (1998) Genes involved in osmoregulation during turgor-driven cell expansion of developing cotton fibres are differentially regulated. Plant Physiol 116:1539–1549

    Article  PubMed  CAS  Google Scholar 

  • Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM (2005) A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17:2230–2242

    Article  PubMed  CAS  Google Scholar 

  • Stevenson FJ (1994) Biochemistry of the formation of humic substances. In: Stevenson FJ (ed) Humus chemistry, genesis, composition, reactions. John Wiley, New York, pp 188–211

    Google Scholar 

  • Swarup R, Parry G, Graham N, Allen T, Bennett M (2002) Auxin cross-talk: integration of signalling pathways to control plant development. Plant Mol Biol 49:411–426

    Article  PubMed  CAS  Google Scholar 

  • Sze H (1985) H+-translocating ATPases: advances using membrane vesicles. Annu Rev Plant Physiol 36:113–122

    Article  Google Scholar 

  • Vaughan D, Malcom RE (1985) Influence of humic substances on growth and physiological process. In: Vaughan D, Malcolm RE (eds) Soil organic matter and biological activity. Kluwer, Dordrecht, pp 37–75

    Google Scholar 

  • Whitehead DC (1963) Some aspects of the influence of organic matter on soil fertility. Soils Fert 26:217–223

    CAS  Google Scholar 

  • Zhao H, Hertel R, Ishikawa H, Evans ML (2002) Species differences in ligand specificity of auxin-controlled elongation and auxin transport: comparing Zea and Vigna. Planta 216:293–301

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Anna L. Okorokova-Façanha (UENF, Rio de Janeiro, Brazil) for critical revision of the manuscript. We are also indebted to two anonymous referees for valuable comments and suggestions. This work was supported by the International Foundation for Science (IFS), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnoldo Rocha Façanha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zandonadi, D.B., Canellas, L.P. & Façanha, A.R. Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps activation. Planta 225, 1583–1595 (2007). https://doi.org/10.1007/s00425-006-0454-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0454-2

Keywords

Navigation