Skip to main content
Log in

Engineering isoflavone metabolism with an artificial bifunctional enzyme

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Plant secondary metabolism has been a focus of research in recent years due to its significant roles in plant defense and in human medicine and nutrition. A protein engineering strategy was designed to more effectively manipulate plant secondary metabolite (isoflavonoid) biosynthesis. A bifunctional isoflavone synthase/chalcone isomerase (IFS/CHI) enzyme was constructed by in-frame gene fusion, and expressed in yeast and tobacco. The fusion protein was targeted to the endoplasmic reticulum (ER) membrane and the individual enzymatic functions of its component fragments were retained when assayed in yeast. Petals and young leaves of IFS/CHI transgenic tobacco plants produced higher levels of the isoflavone genistein and genistein glycosides as a ratio of total flavonoids produced than did plants transformed with IFS alone. Thus, through a combined molecular modeling, in vitro protein engineering and in planta metabolic engineering approach, it was possible to increase the potential for accumulation of isoflavonoid compounds in non-legume plants. Construction of bifunctional enzymes will simplify the transformation of plants with multiple pathway genes, and such enzymes may find broad uses for enzyme (e.g., cytochrome P450 family) and biochemical pathway engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CHI:

Chalcone isomerase

CHS:

Chalcone synthase

EGFP:

Enhanced green fluorescent protein

IFS:

Isoflavone synthase

References

  • Achnine L, Blancaflor EB, Rasmussen S, Dixon RA (2004) Colocalization of l-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 16:3098–3109

    Article  PubMed  CAS  Google Scholar 

  • Achnine L, Huhman V, Farag MA, Sumner LW, Blount JW, Dixon RA (2005) Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula. Plant J 41:875–887

    Article  PubMed  CAS  Google Scholar 

  • Akashi T, Aoki T, Ayabe S (1999) Cloning and functional expression of a cytochrome P450 cDNA encoding 2-hydroxyisoflavanone synthase involved in biosynthesis of the isoflavonoid skeleton in licorice. Plant Physiol 121:821–828

    Article  PubMed  CAS  Google Scholar 

  • Akashi T, Aoki T, Ayabe S (2005) Molecular and biochemical characterization of 2-hydroxyisoflavanone dehydratase. Involvement of carboxylesterase-like proteins in leguminous isoflavone biosynthesis. Plant Physiol 137:882–891

    Article  PubMed  CAS  Google Scholar 

  • Barnes S (2004) Soy isoflavones-phytoestrogens and what else? J Nutr 134:1225S–1228S

    PubMed  Google Scholar 

  • Bednar RA, Hadcock JR (1988) Purification and characterization of chalcone isomerase from soybeans. J Biol Chem 263:9582–9588

    PubMed  CAS  Google Scholar 

  • Bomati EK, Austin MB, Bowmann ME, Dixon RA, Noel JP (2005) Structural elucidation of chalcone reductase and implications for deoxychalcone biosynthesis. J Biol Chem 280:30496–30503

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bülow L (1990) Preparation of artificial bifunctional enzymes by gene fusion. Biochem Soc Symp 57:123–133

    PubMed  Google Scholar 

  • Cornwell T, Cohick W, Raskin I (2004) Dietary phytoestrogens and health. Phytochemistry 65:995–1016

    Article  PubMed  CAS  Google Scholar 

  • Deavours BE, Dixon RA (2005) Metabolic engineering of isoflavonoid biosynthesis in alfalfa. Plant Physiol 138:2245–2259

    Article  PubMed  CAS  Google Scholar 

  • DellaPenna D (1999) Nutritional genomics: manipulating plant micronutrients to improve human health. Science 285:375–379

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA (2004) Phytoestrogens. Annu Rev Plant Biol 55:225–261

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA (2005) Engineering of plant natural product pathways. Curr Opin Plant Biol 8:329–336

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Ferreira D (2002) Molecules of interest: genistein. Phytochemistry 60:205–211

    Article  PubMed  CAS  Google Scholar 

  • Galili G, Hofgen R (2002) Metabolic engineering of amino acids and storage proteins in plants. Metab Eng 4:3–11

    Article  PubMed  CAS  Google Scholar 

  • Hey T, Fiedler E, Rudolph R, Fiedler M (2005) Artificial, non-antibody binding proteins for pharmaceutical and industrial applications. Trends Biotechnol 23:514–522

    Article  PubMed  CAS  Google Scholar 

  • Higuchi R (1990) Recombinant PCR. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols. Academic, New York, pp 177–182

  • Horsch RB, Fry J, Hoffmann N, Neidermeyer J, Rogers SG, Fraley RT (1988) Leaf disc transformation. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual, vol A5. Kluwer, Dordrecht, pp 1–9

  • Huhman DV, Berhow MA, Sumner LW (2005) Quantification of saponins in aerial and subterranean tissures of Medicago truncatula. J Agric Food Chem 53:1914–1920

    Article  PubMed  CAS  Google Scholar 

  • James CL, Viola RE (2002) Production and characterization of bifunctional enzymes. Substrate channeling in the aspartate pathway. Biochemistry 41:3726–3731

    Article  PubMed  CAS  Google Scholar 

  • Jez JM, Bowman ME, Dixon RA, Noel JP (2000) Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nat Struct Biol 7:786–791

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen K, Bak S, Busk PK, Sorensen C, Olsen CE, Puonti-Kaerlas J, Moller BL (2005) Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology. Plant Physiol 139:363–374

    Article  PubMed  Google Scholar 

  • Keung WM, Vallee BL (1993) Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase. Proc Natl Acad Sci USA 90:1247–1251

    Article  PubMed  CAS  Google Scholar 

  • Kochs G, Grisebach H (1986) Enzymic synthesis of isoflavones. Eur J Biochem 155:311–318

    Article  PubMed  CAS  Google Scholar 

  • Kourtz L, Dillon K, Daughtry S, Madison LL, Peoples O, Snell KD (2005) A novel thiolase–reductase gene fusion promotes the production of polyhydroxybutyrate in Arabidopsis. Plant Biotech J 3:435–447

    Article  CAS  Google Scholar 

  • La Camera S, Gouzerh G, Dhondt S, Hoffmann L, Fritig B, Legrand M, Heitz T (2004) Metabolic reprogramming in plant innate immunity: the contributions of phenylpropanoid and oxylipin pathways. Immunol Rev 198:267–284

    Article  PubMed  CAS  Google Scholar 

  • Li L, Zhou Y, Cheng X, Sun J, Marita JM, Ralph J, Chiang VL (2003) Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc Natl Acad Sci USA 100:4939–4944

    Article  PubMed  CAS  Google Scholar 

  • Lin L, Liu YG, Xu X, Li B (2003) Efficient linking and transfer of multiple genes by a multigene assembly and transformation vector system. Proc Natl Acad Sci USA 100:5962–5967

    Article  PubMed  CAS  Google Scholar 

  • Liu CJ, Dixon RA (2001) Elicitor-induced association of isoflavone O-methyltransferase with endomembranes prevents the formation and 7-O-methylation of daidzein during isoflavonoid phytoalexin biosynthesis. Plant Cell 13:2643–2658

    Article  PubMed  CAS  Google Scholar 

  • Liu CJ, Blount JW, Steele CJ, Dixon RA (2002) Bottlenecks for metabolic engineering of isoflavone glycoconjugates in Arabidopsis. Proc Natl Acad Sci USA 99:14578–14583

    Article  PubMed  CAS  Google Scholar 

  • Liu CJ, Huhman D, Sumner LW, Dixon RA (2003) Regiospecific hydroxylation of isoflavones by cytochrome p450 81E enzymes from Medicago truncatula. Plant J 36:471–484

    Article  PubMed  CAS  Google Scholar 

  • Netzer WJ, Hartl FU (1997) Recombination of protein domains facilitated by co-translational folding in eukaryotes. Nature 388:343–349

    Article  PubMed  CAS  Google Scholar 

  • Nixon AE, Ostermeier M, Benkovic SJ (1998) Hybrid enzymes: manipulating enzyme design. Trends Biotechnol 16:258–264

    Article  PubMed  CAS  Google Scholar 

  • Ptashne M, Gann A (2002) Genes and signals. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Pompon D, Louerat B, Bronine A, Urban P (1996) Yeast expression of animal and plant P450s in optimized redox environments. Methods Enzymol 272:51–64

    Article  PubMed  CAS  Google Scholar 

  • Restrepo MA, Freed DD, Carrington JC (1990) Nuclear transport of plant potyviral proteins. Plant Cell 2:987–998

    Article  PubMed  CAS  Google Scholar 

  • Ro DK, Mah N, Ellis BE, Douglas CJ (2001) Functional characterization and subcellular localization of poplar (Populus trichocarpa x Populus deltoides) cinnamate 4-hydroxylase. Plant Physiol 126:317–329

    Article  PubMed  CAS  Google Scholar 

  • Sawada Y, Kinoshita K, Akashi T, Aoki T, Ayabe S (2002) Key amino acid residues required for aryl migration catalysed by the cytochrome P450 2-hydroxyisoflavanone synthase. Plant J 31:555–564

    Article  PubMed  CAS  Google Scholar 

  • Shimada N, Aoki T, Sato S, Nakamura Y, Tabata S, Ayabe S (2003) A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legume-specific 5-deoxy(iso)flavonoids in Lotus japonicus. Plant Physiol 131:941–951

    Article  PubMed  CAS  Google Scholar 

  • Shimokoriyama M (1957) Interconversion of chalcones and flavanones of a phloroglucinol-type structure. J Am Chem Soc 79:4199–4202

    Article  CAS  Google Scholar 

  • Skerra A (2003) Imitating the humoral immune response. Curr Opin Chem Biol 7:683–693

    Article  PubMed  CAS  Google Scholar 

  • Steele CL, Gijzen M, Qutob D, Dixon RA (1999) Molecular characterization of the enzyme catalyzing the aryl migration reaction of isoflavonoid biosynthesis in soybean. Arch Biochem Biophys 367:146–150

    Article  PubMed  CAS  Google Scholar 

  • Tattersall DB, Bak S, Jones PR, Olsen CE, Nielsen JK, Hansen ML, Høj PB, Møller BL (2001) Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science 293:1826–1828

    Article  PubMed  CAS  Google Scholar 

  • Thelen JJ, Ohlrogge JB (2002) Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng 4:12–21

    Article  PubMed  CAS  Google Scholar 

  • Verpoorte R, Memelink J (2002) Engineering secondary metabolite production in plants. Curr Opin Biotechnol 13:181–187

    Article  PubMed  CAS  Google Scholar 

  • Vogt T, Jones P (2000) Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci 5:380–386

    Article  PubMed  CAS  Google Scholar 

  • Werck-Reichhart D, Bak S, Paquette S (2002) Cytochrome P450. In: Somerville CR, Meyerowitz EM (eds) The arabidopsis book, Rockville American Society of Plant Biologists, doi/10.1199/tab.0028, http://www.aspb.org/publications/arabidopsis

  • Williams PA, Cosme J, Sridhar V, Johnson EF, McRee DE (2000) Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol Cell 5:121–131

    Article  PubMed  CAS  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Truksa M. Datla N, Vrinten P, Bauer J, Zank T, Cirpus P, Heinz E, Qiu X (2005) Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nat Biotechnol 23:1013–1017

    Article  PubMed  CAS  Google Scholar 

  • Xie DY, Sharma SB, Paiva NL, Ferreira D, Dixon RA (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299:396–399

    Article  PubMed  CAS  Google Scholar 

  • Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    Article  PubMed  CAS  Google Scholar 

  • Yu O, Jung W, Shi J, Croes RA, Fader GM, McGonigle B, Odell JT (2000) Production of the isoflavones genistein and daidzein in non-legume dicot and monocot tissues. Plant Physiol 124:781–793

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Xiaoqiang Wang for molecular modeling of IFS, Dr. Elison Blancaflor for assistance with confocal microscopy, Dr. Lahoucine Achnine for providing pRTL2-C4H MA-EGFP, Dr. Philip Urban for providing the WAT11 strain and pYeDP60 vector, and Drs. Xiaoqiang Wang and Gregory Peel for critical reading of the manuscript. This work was supported by the Samuel Roberts Noble Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.A. Dixon.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, L., Dixon, R. Engineering isoflavone metabolism with an artificial bifunctional enzyme. Planta 224, 496–507 (2006). https://doi.org/10.1007/s00425-006-0233-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0233-0

Keywords

Navigation