Skip to main content
Log in

A low [Ca2+]i-induced enhancement of cAMP-activated ciliary beating by PDE1A inhibition in mouse airway cilia

  • Signaling and cell physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

This study demonstrated that PDE1 (phosphodiesterase 1) existing in the ciliary beat frequency (CBF)-regulating metabolon regulates CBF in procaterol-stimulated lung airway ciliary cells of mouse. Procaterol (an β2-agonist) increased the ciliary bend angle (CBA) and CBF via cAMP accumulation in the ciliary cells of mice: interestingly, the time course of CBF increase was slower than that of CBA increase. However, IBMX (3-isobutyl-1-methylxanthine, an inhibitor of PDE) increased CBA and CBF in an identical time course. Lowering an intracellular Ca2+ concentration ([Ca2+]i) caused by switching to an EGTA-containing Ca2+-free solution from normal one elevated the procaterol-induced increasing rate of CBF. These observations suggest that Ca2+-dependent PDE1 controls cAMP-stimulated CBF increase. Either application of 8MmIBMX (8-methoxymethyl-IBMX, a selective PDE1 inhibitor), BAPTA-AM (an intracellular Ca2+ chelator), or calmidazolium (an inhibitior of calmodulin) alone increased CBA and CBF in the lung airway ciliary cells and increased cAMP contents in the isolated lung cells, and like IBMX, each application of the compound made the time courses of CBA and CBF increase stimulated by procaterol identical. The immunoelectron microscopic examinations revealed that PDE1A exists in the space between the nine doublet tubules ring and plasma membrane in the lung airway cilium, where the outer dynein arm (a molecular motor regulating CBF) functions. In conclusion, PDE1A is a key factor slowing the time course of the procaterol-induced increase in CBF via degradation of cAMP in the CBF-regulating metabolon of the mouse lung airway cilia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Afzelius BA (2004) Cilia-related diseases. J Pathol 204:470–477

    Article  CAS  PubMed  Google Scholar 

  2. Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharacol Rev 58:488–520

    Article  CAS  Google Scholar 

  3. Brokaw CJ (1994) Control of flagellar bending: a new agenda based on dynein diversity. Cell Motil Cytoskeleton 28:199–204

    Article  CAS  PubMed  Google Scholar 

  4. Brokaw CJ, Kamiya R (1987) Bending patterns of Chlamydomonas flagella: IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function. Cell Motil Cytoskeleton 8:68–75

    Article  CAS  PubMed  Google Scholar 

  5. Butcher RL, Collins WE, Fugo NW (1974) Plasma concentration of LH, FSH, prolactin, progesterone and estradiol-17beta throughout the 4-day estrous cycle of the rat. Endocrinology 94:1704–1708

    Article  CAS  PubMed  Google Scholar 

  6. Chilvers MA, Rutman A, O’Callaghan C (2003) Ciliary beat pattern is associated with specific ultrastructural defects in primary ciliary dyskinesia. J Allergy Clin Immunol 112:518–524

    Article  PubMed  Google Scholar 

  7. Delmotte P, Sanderson MJ (2006) Ciliary beat frequency is maintained at maximal rate in the small airways of mouse lung slices. Am J Respir Cell Mol Biol 35:110–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Francis SH, Blount MA, Corbin JD (2011) Mammalian cyclic nucleotide pohosphodiesterase: molecular mechanism and physiological functions. Physiol Rev 91:651–690

    Article  CAS  PubMed  Google Scholar 

  9. Fuhrmann M, Jahn H-U, Seybold J, Neurohr C, Barnes PJ, Hippenstiel S, Kraemer HJ, Suttorp N (1999) Identification and function of cyclic nucleotide phosphodiesterase isoenzymes in airway epithelial cells. Am J Respir Cell Mol Biol 20:292–302

    Article  CAS  PubMed  Google Scholar 

  10. Gibbons IR, Rowe AJ (1965) Dynein: a protein with adenosine triohosphatase activity from cilia. Science 149:424–426

    Article  CAS  PubMed  Google Scholar 

  11. Hard R, Blaustein K, Scarcello L (1992) Reactivation of outer arm-depleted lung axonemes: evidence for functional differences between inner and outer dynein arms in situ. Cell Motil Cytoskeleton 21:199–209

    Article  CAS  PubMed  Google Scholar 

  12. Hayashi T, Kawakami M, Sasaki S, Katsumata T, Mori H, Yoshida H, Nakahari T (2005) ATP regulation of ciliary beat frequency in rat tracheal and distal airway epithelium. Exp Physiol 90:535–544

    Article  CAS  PubMed  Google Scholar 

  13. Jain R, Ray JM, Pan J-H, Brody SL (2012) Sex hormone-dependent regulation of cilia beat frequency in airway epithelium. Am J Respir Cell Mol Biol 46:446–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jourdan KB, Mason NA, Long L, Philips PG, Wilkins MR, Morrell NW (2001) Characterization of adenylyl cyclase isoforms in rat peripheral pulmonary arteries. Am J Physiol Lung Cell Mol Physiol 280:L1359–L1369

    CAS  PubMed  Google Scholar 

  15. Komatani-Tamiya N, Daikoku E, Takemura Y, Shimamoto C, Nakano T, Iwasaki Y, Kohda Y, Matsumura H, Marunaka Y, Nakahari T (2012) Procaterol-stimulated increases in ciliary bend amplitude and ciliary beat frequency in mouse bronchioles. Cell Physiol Biochem 29:511–522

    Article  CAS  PubMed  Google Scholar 

  16. Lefièvre L, de Lamirande E, Gagnon C (2002) Presence of cyclic nucleotide phosphodiesterases PDE1A, existing as a stable complex with calmodulin, and PDE3A in human spermatozoa. Biol Reprod 67:423–430

    Article  PubMed  Google Scholar 

  17. Li W-E, Chen W, Ma Y-F, Tuo Q-R, Luo X-J, Zhang T, Sai W-B, Liu J, Shen J, Liu Z-G, Zhen Y-M, Wang Y-X, Ji G, Liu Q-H (2012) Methods to measure and analyze ciliary beat activity: Ca2+ influx-mediated cilia mechanosensitivity. Pflügers Arch Eur J Physiol 464:671–680

    Article  CAS  Google Scholar 

  18. Matsuzaki Y, Wu H, Nakano T, Nakahari T, Sano K (2015) ATP-association to intrabacterial nanotransportation system in Vibrio cholerae. Med Mol Morphol 48:225–234

    Article  CAS  PubMed  Google Scholar 

  19. Nakahari T, Nishimura A, Shimamoto C, Sakai A, Kuwabara H, Nakano T, Tanaka S, Kohda Y, Matsumura H, Mori H (2011) The regulation of ciliary beat frequency by ovarian steroids in the guinea pig Fallopian tube: interactions between oestradiol and progesterone. Biomed Res-Tokyo 32:321–328

    Article  CAS  Google Scholar 

  20. Nakano T, Aoki H, Wu H, Fujioka Y, Nakazawa E, Sano K (2012) Fine visualization of filamentous structures in the bacterial cytoplasm. J Microbiol Methods 90:60–64

    Article  PubMed  Google Scholar 

  21. Salathe M (2007) Regulation of mammalian ciliary beating. Annu Rev Physiol 69:401–422

    Article  CAS  PubMed  Google Scholar 

  22. Salathe M, Bookman RJ (1999) Mode of Ca2+ action on ciliary beat frequency in single ovine airway epithelial cells. J Physiol 520:851–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shiima-Kinoshita C, Min K-Y, Hanafusa T, Mori H, Nakahari T (2004) β2-adrenergic regulation of ciliary beat frequency in rat bronchiolar epithelium: potentiation by isosmotic cell shrinkage. J Physiol 554:403–416

    Article  CAS  PubMed  Google Scholar 

  24. Smith RP, Shellard R, Dhillon DP, Winter J, Mehta A (1996) Asymmetric interactions between phosphorylation pathways regulating ciliary beat frequency in human nasal respiratory epithelium in vitro. J Physiol 496:883–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tanaka S, Hosogi S, Sawabe Y, Shimamoto C, Matumura H, Inui T, Marunaka Y, Nakahari T (2016) PPARα induced NOS1 phosphorylation via PI3K/Akt in guinea pig antral mucous cells: NO-enhancement in Ca2+-regulated exocytosis. Biomed Res-Tokyo 37(3):167–178

    Article  CAS  Google Scholar 

  26. Turner MJ, Matthes E, Billet A, Ferguson AJ, Thomas DY, Randell SH, Ostrowski LE, Abbott-Banner K, Hanrahan JW (2016) The dual phosphodiesterase 3 and 4 inhibitor RPL554 stimulates CFTR and ciliary beating in primary cultures of bronchial epithelia. Am J Physiol Lung Cell Mol Physiol 310:L59–L70

    Article  PubMed  Google Scholar 

  27. Vasta V, Sonnenburg WK, Yan C, Soderling SH, Shimizu-Albergine M, Beavo JA (2005) Identification of a new valiant of PDE1A calmodulin-stimulated cyclic nucleotide phosphodiesterase expressed in mouse sperm. Biol Reprod 73:598–609

    Article  CAS  PubMed  Google Scholar 

  28. Wanner A, Salathe M, O’riordan TG (1996) Mucociliary clearance in the airways. Am J Respir Crit Care Med 154:1968–1902

    Article  Google Scholar 

  29. Wood CR, Hard R, Hennessey TM (2007) Targeted gene disruption of dynein heavy chain 7 of Tetrahymena thermophila results in altered ciliary waveform and reduced swim speed. J Cell Sci 120:3075–3085

    Article  CAS  PubMed  Google Scholar 

  30. Wyatt TA, Forgèt MA, Sisson JH (2003) Ethanol stimulates ciliary beating by dual cyclic nucleotide kinase activation in bovine bronchial epithelial cells. Am J Pathol 163:1157–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Osaka Medical College for giving us an opportunity to perform the experiments using the video microscope equipped with a high-speed camera. This work is partly supported by the contracted research fund from Otsuka Pharmaceutical Co., Ltd. (Tokyo, Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Nakahari.

Ethics declarations

The procedures and protocols for the experiments were approved by the Committee for Animal Research of Kyoto Prefectural University of Medicine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kogiso, H., Hosogi, S., Ikeuchi, Y. et al. A low [Ca2+]i-induced enhancement of cAMP-activated ciliary beating by PDE1A inhibition in mouse airway cilia. Pflugers Arch - Eur J Physiol 469, 1215–1227 (2017). https://doi.org/10.1007/s00424-017-1988-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-017-1988-9

Keywords

Navigation