Skip to main content

Advertisement

Log in

Claudins in viral infection: from entry to spread

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Tight junctions are critically important for many physiological functions, including the maintenance of cell polarity, regulation of paracellular permeability, and involvement in signal transduction pathways to regulate integral cellular processes. Furthermore, tight junctions enable epithelial cells to form physical barriers, which act as an innate immune mechanism that can impede viral infection. Viruses, in turn, have evolved mechanisms to exploit tight junction proteins to gain access to cells or spread through tissues in an infected host. Claudin family proteins are integral components of tight junctions and are thought to play crucial roles in regulating their permeability. Claudins have been implicated in the infection process of several medically important human pathogens, including hepatitis C virus, dengue virus, West Nile virus, and human immunodeficiency virus, among others. In this review, we summarize the role of claudins in viral infections and discuss their potential as novel antiviral targets. A better understanding of claudins during viral infection may provide insight into physiological roles of claudins and uncover novel therapeutic antiviral strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abuazza G, Becker A, Williams SS, Chakravarty S, Truong HT, Lin F, Baum M (2006) Claudins 6, 9, and 13 are developmentally expressed renal tight junction proteins. Am J Physiol Renal Physiol 291:F1132–F1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Agnello V, Abel G, Elfahal M, Knight GB, Zhang QX (1999) Hepatitis C virus and other Flaviviridae viruses enter cells via low density lipoprotein receptor. Proc Natl Acad Sci U S A 96:12766–12771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Agrawal T, Sharvani V, Nair D, Medigeshi GR (2013) Japanese encephalitis virus disrupts cell-cell junctions and affects the epithelial permeability barrier functions. PLoS One 8:e69465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Andras IE, Pu H, Deli MA, Nath A, Hennig B, Toborek M (2003) HIV-1 Tat protein alters tight junction protein expression and distribution in cultured brain endothelial cells. J Neurosci Res 74:255–265

    Article  CAS  PubMed  Google Scholar 

  5. Andras IE, Pu H, Tian J, Deli MA, Nath A, Hennig B, Toborek M (2005) Signaling mechanisms of HIV-1 Tat-induced alterations of claudin-5 expression in brain endothelial cells. J Cereb Blood Flow Metab 25:1159–1170

    Article  CAS  PubMed  Google Scholar 

  6. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The Swiss-model workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  7. Awan FM, Anjum S, Obaid A, Ali A, Paracha RZ, Janjua HA (2014) In-silico analysis of claudin-5 reveals novel putative sites for post-translational modifications: insights into potential molecular determinants of blood-brain barrier breach during HIV-1 infiltration. Infect Genet Evol 27:355–365

    Article  CAS  PubMed  Google Scholar 

  8. Barth H, Schafer C, Adah MI, Zhang F, Linhardt RJ, Toyoda H, Kinoshita-Toyoda A, Toida T, Van Kuppevelt TH, Depla E, Von Weizsacker F, Blum HE, Baumert TF (2003) Cellular binding of hepatitis C virus envelope glycoprotein E2 requires cell surface heparan sulfate. J Biol Chem 278:41003–41012

    Article  CAS  PubMed  Google Scholar 

  9. Barth H, Schnober EK, Zhang F, Linhardt RJ, Depla E, Boson B, Cosset FL, Patel AH, Blum HE, Baumert TF (2006) Viral and cellular determinants of the hepatitis C virus envelope-heparan sulfate interaction. J Virol 80:10579–10590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI (2013) The global distribution and burden of dengue. Nature 496:504–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boisse L, Gill MJ, Power C (2008) HIV infection of the central nervous system: clinical features and neuropathogenesis. Neurol Clin 26:799–819 x

    Article  PubMed  Google Scholar 

  12. Brimacombe CL, Grove J, Meredith LW, Hu K, Syder AJ, Flores MV, Timpe JM, Krieger SE, Baumert TF, Tellinghuisen TL, Wong-Staal F, Balfe P, McKeating JA (2011) Neutralizing antibody-resistant hepatitis C virus cell-to-cell transmission. J Virol 85:596–605

    Article  CAS  PubMed  Google Scholar 

  13. Brinton MA (2014) Replication cycle and molecular biology of the West Nile virus. Viruses 6:13–53

    Article  CAS  Google Scholar 

  14. Campbell JA, Schelling P, Wetzel JD, Johnson EM, Forrest JC, Wilson GA, Aurrand-Lions M, Imhof BA, Stehle T, Dermody TS (2005) Junctional adhesion molecule a serves as a receptor for prototype and field-isolate strains of mammalian reovirus. J Virol 79:7967–7978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carson SD (2001) Receptor for the group B coxsackieviruses and adenoviruses: CAR. Rev Med Virol 11:219–226

    Article  CAS  PubMed  Google Scholar 

  16. Chaudhuri A, Yang B, Gendelman HE, Persidsky Y, Kanmogne GD (2008) STAT1 signaling modulates HIV-1-induced inflammatory responses and leukocyte transmigration across the blood-brain barrier. Blood 111:2062–2072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Che P, Tang H, Li Q (2013) The interaction between claudin-1 and dengue viral prM/M protein for its entry. Virology 446:303–313

    Article  CAS  PubMed  Google Scholar 

  18. Choo QL, Richman KH, Han JH, Berger K, Lee C, Dong C, Gallegos C, Coit D, Medina-Selby R, Barr PJ et al (1991) Genetic organization and diversity of the hepatitis C virus. Proc Natl Acad Sci U S A 88:2451–2455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cukierman L, Meertens L, Bertaux C, Kajumo F, Dragic T (2009) Residues in a highly conserved claudin-1 motif are required for hepatitis C virus entry and mediate the formation of cell-cell contacts. J Virol 83:5477–5484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Davis C, Harris HJ, Hu K, Drummer HE, McKeating JA, Mullins JG, Balfe P (2012) In silico directed mutagenesis identifies the CD81/claudin-1 hepatitis C virus receptor interface. Cell Microbiol 14:1892–1903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Desselberger U (2014) Rotaviruses. Virus Res 190:75–96

    Article  CAS  PubMed  Google Scholar 

  22. Dickman KG, Hempson SJ, Anderson J, Lippe S, Zhao L, Burakoff R, Shaw RD (2000) Rotavirus alters paracellular permeability and energy metabolism in Caco-2 cells. Am J Physiol Gastrointest Liver Physiol 279:G757–G766

    CAS  PubMed  Google Scholar 

  23. Douam F, Dao Thi VL, Maurin G, Fresquet J, Mompelat D, Zeisel MB, Baumert TF, Cosset FL, Lavillette D (2014) Critical interaction between E1 and E2 glycoproteins determines binding and fusion properties of hepatitis C virus during cell entry. Hepatology 59:776–788

    Article  CAS  PubMed  Google Scholar 

  24. Epple HJ, Schneider T, Troeger H, Kunkel D, Allers K, Moos V, Amasheh M, Loddenkemper C, Fromm M, Zeitz M, Schulzke JD (2009) Impairment of the intestinal barrier is evident in untreated but absent in suppressively treated HIV-infected patients. Gut 58:220–227

    Article  CAS  PubMed  Google Scholar 

  25. Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M, Wolk B, Hatziioannou T, McKeating JA, Bieniasz PD, Rice CM (2007) Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446:801–805

    Article  CAS  PubMed  Google Scholar 

  26. Farquhar MJ, Hu K, Harris HJ, Davis C, Brimacombe CL, Fletcher SJ, Baumert TF, Rappoport JZ, Balfe P, McKeating JA (2012) Hepatitis C virus induces CD81 and claudin-1 endocytosis. J Virol 86:4305–4316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fofana I, Krieger SE, Grunert F, Glauben S, Xiao F, Fafi-Kremer S, Soulier E, Royer C, Thumann C, Mee CJ, McKeating JA, Dragic T, Pessaux P, Stoll-Keller F, Schuster C, Thompson J, Baumert TF (2010) Monoclonal anti-claudin 1 antibodies prevent hepatitis C virus infection of primary human hepatocytes. Gastroenterology 139:953–964 964 e951-954

    Article  CAS  PubMed  Google Scholar 

  28. Fofana I, Zona L, Thumann C, Heydmann L, Durand SC, Lupberger J, Blum HE, Pessaux P, Gondeau C, Reynolds GM, McKeating JA, Grunert F, Thompson J, Zeisel MB, Baumert TF (2013) Functional analysis of claudin-6 and claudin-9 as entry factors for hepatitis C virus infection of human hepatocytes by using monoclonal antibodies. J Virol 87:10405–10410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Freimuth P, Philipson L, Carson SD (2008) The coxsackievirus and adenovirus receptor. Curr Top Microbiol Immunol 323:67–87

    CAS  PubMed  Google Scholar 

  30. Fukasawa M, Nagase S, Shirasago Y, Iida M, Yamashita M, Endo K, Yagi K, Suzuki T, Wakita T, Hanada K, Kuniyasu H, Kondoh M (2015) Monoclonal antibodies against extracellular domains of claudin-1 block hepatitis C virus infection in a mouse model. J Virol 89:4866–4879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S (1998) Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 141:1539–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788

    Article  CAS  PubMed  Google Scholar 

  33. Gao F, Duan X, Lu X, Liu Y, Zheng L, Ding Z, Li J (2010) Novel binding between pre-membrane protein and claudin-1 is required for efficient dengue virus entry. Biochem Biophys Res Commun 391:952–957

    Article  CAS  PubMed  Google Scholar 

  34. Gebhard LG, Filomatori CV, Gamarnik AV (2011) Functional RNA elements in the dengue virus genome. Viruses 3:1739–1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gerold G, Meissner F, Bruening J, Welsch K, Perin PM, Baumert TF, Vondran FW, Kaderali L, Marcotrigiano J, Khan AG, Mann M, Rice CM, Pietschmann T (2015) Quantitative proteomics identifies serum response factor binding protein 1 as a host factor for hepatitis C virus entry. Cell Rep 12:864–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gonzalez-Mariscal L, Tapia R, Chamorro D (2008) Crosstalk of tight junction components with signaling pathways. Biochim Biophys Acta 1778:729–756

    Article  CAS  PubMed  Google Scholar 

  37. Gregory M, Dufresne J, Hermo L, Cyr D (2001) Claudin-1 is not restricted to tight junctions in the rat epididymis. Endocrinology 142:854–863

    CAS  PubMed  Google Scholar 

  38. Guerrero CA, Mendez E, Zarate S, Isa P, Lopez S, Arias CF (2000) Integrin alpha(v)beta(3) mediates rotavirus cell entry. Proc Natl Acad Sci U S A 97:14644–14649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gunzel D, Fromm M (2012) Claudins and other tight junction proteins. Compr Physiol 2:1819–1852

    PubMed  Google Scholar 

  40. Gunzel D, Yu AS (2013) Claudins and the modulation of tight junction permeability. Physiol Rev 93:525–569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Haid S, Grethe C, Dill MT, Heim M, Kaderali L, Pietschmann T (2014) Isolate-dependent use of claudins for cell entry by hepatitis C virus. Hepatology 59:24–34

    Article  CAS  PubMed  Google Scholar 

  42. Hall CB, Weinberg GA, Iwane MK, Blumkin AK, Edwards KM, Staat MA, Auinger P, Griffin MR, Poehling KA, Erdman D, Grijalva CG, Zhu Y, Szilagyi P (2009) The burden of respiratory syncytial virus infection in young children. N Engl J Med 360:588–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Harris HJ, Davis C, Mullins JG, Hu K, Goodall M, Farquhar MJ, Mee CJ, McCaffrey K, Young S, Drummer H, Balfe P, McKeating JA (2010) Claudin association with CD81 defines hepatitis C virus entry. J Biol Chem 285:21092–21102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Harris HJ, Farquhar MJ, Mee CJ, Davis C, Reynolds GM, Jennings A, Hu K, Yuan F, Deng H, Hubscher SG, Han JH, Balfe P, McKeating JA (2008) CD81 and claudin 1 coreceptor association: role in hepatitis C virus entry. J Virol 82:5007–5020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hidari KI, Suzuki T (2011) Dengue virus receptor. Trop Med Health 39:37–43

    Article  PubMed  PubMed Central  Google Scholar 

  46. Higginbottom A, Quinn ER, Kuo CC, Flint M, Wilson LH, Bianchi E, Nicosia A, Monk PN, McKeating JA, Levy S (2000) Identification of amino acid residues in CD81 critical for interaction with hepatitis C virus envelope glycoprotein E2. J Virol 74:3642–3649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hopcraft SE, Evans MJ (2015) Selection of a hepatitis C virus with altered entry factor requirements reveals a genetic interaction between the E1 glycoprotein and claudins. Hepatology 62:1059–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Inai T, Sengoku A, Hirose E, Iida H, Shibata Y (2007) Claudin-7 expressed on lateral membrane of rat epididymal epithelium does not form aberrant tight junction strands. Anat Rec (Hoboken) 290:1431–1438

    Article  Google Scholar 

  49. Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita S (1999) Direct binding of three tight junction-associated MAGUKS, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol 147:1351–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jacobs SE, Lamson DM, St George K, Walsh TJ (2013) Human rhinoviruses. Clin Microbiol Rev 26:135–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kong L, Giang E, Nieusma T, Kadam RU, Cogburn KE, Hua Y, Dai X, Stanfield RL, Burton DR, Ward AB, Wilson IA, Law M (2013) Hepatitis C virus E2 envelope glycoprotein core structure. Science 342:1090–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kovalenko OV, Yang XH, Hemler ME (2007) A novel cysteine cross-linking method reveals a direct association between claudin-1 and tetraspanin CD9. Mol Cell Proteomics 6:1855–1867

    Article  CAS  PubMed  Google Scholar 

  53. Krause G, Winkler L, Mueller SL, Haseloff RF, Piontek J, Blasig IE (2008) Structure and function of claudins. Biochim Biophys Acta 1778:631–645

    Article  CAS  PubMed  Google Scholar 

  54. Krieger SE, Zeisel MB, Davis C, Thumann C, Harris HJ, Schnober EK, Mee C, Soulier E, Royer C, Lambotin M, Grunert F, Dao Thi VL, Dreux M, Cosset FL, McKeating JA, Schuster C, Baumert TF (2010) Inhibition of hepatitis C virus infection by anti-claudin-1 antibodies is mediated by neutralization of E2-CD81-claudin-1 associations. Hepatology 51:1144–1157

    Article  CAS  PubMed  Google Scholar 

  55. Kularatne SA (2015) Dengue fever. BMJ 351:h4661

    Article  PubMed  CAS  Google Scholar 

  56. Lavillette D, Bartosch B, Nourrisson D, Verney G, Cosset FL, Penin F, Pecheur EI (2006) Hepatitis C virus glycoproteins mediate low pH-dependent membrane fusion with liposomes. J Biol Chem 281:3909–3917

    Article  CAS  PubMed  Google Scholar 

  57. Lefevre M, Felmlee DJ, Parnot M, Baumert TF, Schuster C (2014) Syndecan 4 is involved in mediating HCV entry through interaction with lipoviral particle-associated apolipoprotein E. PLoS One 9:e95550

    Article  PubMed  PubMed Central  Google Scholar 

  58. Li Q, Sodroski C, Lowey B, Schweitzer CJ, Cha H, Zhang F, Liang TJ (2016) Hepatitis C virus depends on E-cadherin as an entry factor and regulates its expression in epithelial-to-mesenchymal transition. Proc Natl Acad Sci U S A 113:7620–7625

    Article  CAS  PubMed  Google Scholar 

  59. Lupberger J, Zeisel MB, Xiao F, Thumann C, Fofana I, Zona L, Davis C, Mee CJ, Turek M, Gorke S, Royer C, Fischer B, Zahid MN, Lavillette D, Fresquet J, Cosset FL, Rothenberg SM, Pietschmann T, Patel AH, Pessaux P, Doffoel M, Raffelsberger W, Poch O, McKeating JA, Brino L, Baumert TF (2011) EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat Med 17:589–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mailly L, Xiao F, Lupberger J, Wilson GK, Aubert P, Duong FH, Calabrese D, Leboeuf C, Fofana I, Thumann C, Bandiera S, Lutgehetmann M, Volz T, Davis C, Harris HJ, Mee CJ, Girardi E, Chane-Woon-Ming B, Ericsson M, Fletcher N, Bartenschlager R, Pessaux P, Vercauteren K, Meuleman P, Villa P, Kaderali L, Pfeffer S, Heim MH, Neunlist M, Zeisel MB, Dandri M, McKeating JA, Robinet E, Baumert TF (2015) Clearance of persistent hepatitis C virus infection in humanized mice using a claudin-1-targeting monoclonal antibody. Nat Biotechnol 33:549–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Makino A, Shimojima M, Miyazawa T, Kato K, Tohya Y, Akashi H (2006) Junctional adhesion molecule 1 is a functional receptor for feline calicivirus. J Virol 80:4482–4490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Martin DN, Uprichard SL (2013) Identification of transferrin receptor 1 as a hepatitis C virus entry factor. Proc Natl Acad Sci U S A 110:10777–10782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Martin-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, Simmons D, Dejana E (1998) Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 142:117–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Masaki T, Kojima T, Okabayashi T, Ogasawara N, Ohkuni T, Obata K, Takasawa A, Murata M, Tanaka S, Hirakawa S, Fuchimoto J, Ninomiya T, Fujii N, Tsutsumi H, Himi T, Sawada N (2011) A nuclear factor-kappa B signaling pathway via protein kinase C delta regulates replication of respiratory syncytial virus in polarized normal human nasal epithelial cells. Mol Biol Cell 22:2144–2156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. McDougal JS, Kennedy MS, Sligh JM, Cort SP, Mawle A, Nicholson JK (1986) Binding of HTLV-III/LAV to T4+ T cells by a complex of the 110 k viral protein and the T4 molecule. Science 231:382–385

    Article  CAS  PubMed  Google Scholar 

  66. Medigeshi GR, Hirsch AJ, Brien JD, Uhrlaub JL, Mason PW, Wiley C, Nikolich-Zugich J, Nelson JA (2009) West Nile virus capsid degradation of claudin proteins disrupts epithelial barrier function. J Virol 83:6125–6134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Meertens L, Bertaux C, Cukierman L, Cormier E, Lavillette D, Cosset FL, Dragic T (2008) The tight junction proteins claudin-1, -6, and -9 are entry cofactors for hepatitis C virus. J Virol 82:3555–3560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Meertens L, Bertaux C, Dragic T (2006) Hepatitis C virus entry requires a critical postinternalization step and delivery to early endosomes via clathrin-coated vesicles. J Virol 80:11571–11578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Morita K, Furuse M, Fujimoto K, Tsukita S (1999) Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci U S A 96:511–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nakano Y, Kim SH, Kim HM, Sanneman JD, Zhang Y, Smith RJ, Marcus DC, Wangemann P, Nessler RA, Banfi B (2009) A claudin-9-based ion permeability barrier is essential for hearing. PLoS Genet 5:e1000610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Nava P, Lopez S, Arias CF, Islas S, Gonzalez-Mariscal L (2004) The rotavirus surface protein VP8 modulates the gate and fence function of tight junctions in epithelial cells. J Cell Sci 117:5509–5519

    Article  CAS  PubMed  Google Scholar 

  72. Nazli A, Chan O, Dobson-Belaire WN, Ouellet M, Tremblay MJ, Gray-Owen SD, Arsenault AL, Kaushic C (2010) Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing microbial translocation. PLoS Pathog 6:e1000852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Paciello R, Urbanowicz RA, Riccio G, Sasso E, McClure CP, Zambrano N, Ball JK, Cortese R, Nicosia A, De Lorenzo C (2016) Novel human anti-claudin 1 mAbs inhibit hepatitis C virus infection and may synergize with anti-SRB1 mab. J Gen Virol 97:82–94

    Article  PubMed  Google Scholar 

  74. Park JH, Park S, Yang JS, Kwon OS, Kim S, Jang SK (2013) Discovery of cellular proteins required for the early steps of HCV infection using integrative genomics. PLoS One 8:e60333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Petracca R, Falugi F, Galli G, Norais N, Rosa D, Campagnoli S, Burgio V, Di Stasio E, Giardina B, Houghton M, Abrignani S, Grandi G (2000) Structure-function analysis of hepatitis C virus envelope-CD81 binding. J Virol 74:4824–4830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pileri P, Uematsu Y, Campagnoli S, Galli G, Falugi F, Petracca R, Weiner AJ, Houghton M, Rosa D, Grandi G, Abrignani S (1998) Binding of hepatitis C virus to CD81. Science 282:938–941

    Article  CAS  PubMed  Google Scholar 

  77. Ploss A, Evans MJ, Gaysinskaya VA, Panis M, You H, de Jong YP, Rice CM (2009) Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 457:882–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Reynolds GM, Harris HJ, Jennings A, Hu K, Grove J, Lalor PF, Adams DH, Balfe P, Hubscher SG, McKeating JA (2008) Hepatitis C virus receptor expression in normal and diseased liver tissue. Hepatology 47:418–427

    Article  PubMed  Google Scholar 

  79. Robilotti E, Deresinski S, Pinsky BA (2015) Norovirus. Clin Microbiol Rev 28:134–164

    Article  PubMed  PubMed Central  Google Scholar 

  80. Sainz B Jr, Barretto N, Martin DN, Hiraga N, Imamura M, Hussain S, Marsh KA, Yu X, Chayama K, Alrefai WA, Uprichard SL (2012) Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor. Nat Med 18:281–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Saitoh Y, Suzuki H, Tani K, Nishikawa K, Irie K, Ogura Y, Tamura A, Tsukita S, Fujiyoshi Y (2015) Tight junctions. Structural insight into tight junction disassembly by Clostridium perfringens enterotoxin. Science 347:775–778

    Article  CAS  PubMed  Google Scholar 

  82. Scarselli E, Ansuini H, Cerino R, Roccasecca RM, Acali S, Filocamo G, Traboni C, Nicosia A, Cortese R, Vitelli A (2002) The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J 21:5017–5025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shi Q, Jiang J, Luo G (2013) Syndecan-1 serves as the major receptor for attachment of hepatitis C virus to the surfaces of hepatocytes. J Virol 87:6866–6875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shin K, Fogg VC, Margolis B (2006) Tight junctions and cell polarity. Annu Rev Cell Dev Biol 22:207–235

    Article  CAS  PubMed  Google Scholar 

  85. Si Y, Liu S, Liu X, Jacobs JL, Cheng M, Niu Y, Jin Q, Wang T, Yang W (2012) A human claudin-1-derived peptide inhibits hepatitis C virus entry. Hepatology 56:507–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sufiawati I, Tugizov SM (2014) HIV-associated disruption of tight and adherens junctions of oral epithelial cells facilitates HSV-1 infection and spread. PLoS One 9:e88803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Sugimoto K, Ichikawa-Tomikawa N, Satohisa S, Akashi Y, Kanai R, Saito T, Sawada N, Chiba H (2013) The tight-junction protein claudin-6 induces epithelial differentiation from mouse F9 and embryonic stem cells. PLoS One 8:e75106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC

  89. Toborek M, Lee YW, Flora G, Pu H, Andras IE, Wylegala E, Hennig B, Nath A (2005) Mechanisms of the blood-brain barrier disruption in HIV-1 infection. Cell Mol Neurobiol 25:181–199

    Article  PubMed  Google Scholar 

  90. Torres-Flores JM, Arias CF (2015) Tight junctions go viral! Viruses 7:5145–5154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Torres-Flores JM, Silva-Ayala D, Espinoza MA, Lopez S, Arias CF (2015) The tight junction protein JAM-A functions as coreceptor for rotavirus entry into MA104 cells. Virology 475:172–178

    Article  CAS  PubMed  Google Scholar 

  92. Troeger H, Loddenkemper C, Schneider T, Schreier E, Epple HJ, Zeitz M, Fromm M, Schulzke JD (2009) Structural and functional changes of the duodenum in human norovirus infection. Gut 58:1070–1077

    Article  CAS  PubMed  Google Scholar 

  93. Tugizov SM, Herrera R, Chin-Hong P, Veluppillai P, Greenspan D, Michael Berry J, Pilcher CD, Shiboski CH, Jay N, Rubin M, Chein A, Palefsky JM (2013) HIV-associated disruption of mucosal epithelium facilitates paracellular penetration by human papillomavirus. Virology 446:378–388

    Article  CAS  PubMed  Google Scholar 

  94. Turksen K, Troy TC (2001) Claudin-6: a novel tight junction molecule is developmentally regulated in mouse embryonic epithelium. Dev Dyn 222:292–300

    Article  CAS  PubMed  Google Scholar 

  95. Ujino S, Nishitsuji H, Hishiki T, Sugiyama K, Takaku H, Shimotohno K (2016) Hepatitis C virus utilizes VLVDR as a novel entry pathway. Proc Natl Acad Sci U S A 113:188–193

    Article  CAS  PubMed  Google Scholar 

  96. Verma S, Kumar M, Gurjav U, Lum S, Nerurkar VR (2010) Reversal of West Nile virus-induced blood-brain barrier disruption and tight junction proteins degradation by matrix metalloproteinases inhibitor. Virology 397:130–138

    Article  CAS  PubMed  Google Scholar 

  97. Verma S, Lo Y, Chapagain M, Lum S, Kumar M, Gurjav U, Luo H, Nakatsuka A, Nerurkar VR (2009) West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: transmigration across the in vitro blood-brain barrier. Virology 385:425–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang P, Dai J, Bai F, Kong KF, Wong SJ, Montgomery RR, Madri JA, Fikrig E (2008) Matrix metalloproteinase 9 facilitates West Nile virus entry into the brain. J Virol 82:8978–8985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Xu Z, Waeckerlin R, Urbanowski MD, van Marle G, Hobman TC (2012) West Nile virus infection causes endocytosis of a specific subset of tight junction membrane proteins. PLoS One 7:e37886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yamashita M, Iida M, Tada M, Shirasago Y, Fukasawa M, Nagase S, Watari A, Ishii-Watabe A, Yagi K, Kondoh M (2015) Discovery of anti-claudin-1 antibodies as candidate therapeutics against hepatitis C virus. J Pharmacol Exp Ther 353:112–118

    Article  CAS  PubMed  Google Scholar 

  101. Yang W, Qiu C, Biswas N, Jin J, Watkins SC, Montelaro RC, Coyne CB, Wang T (2008) Correlation of the tight junction-like distribution of claudin-1 to the cellular tropism of hepatitis C virus. J Biol Chem 283:8643–8653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yeo NK, Jang YJ (2010) Rhinovirus infection-induced alteration of tight junction and adherens junction components in human nasal epithelial cells. Laryngoscope 120:346–352

    PubMed  Google Scholar 

  103. Zeisel MB, Koutsoudakis G, Schnober EK, Haberstroh A, Blum HE, Cosset FL, Wakita T, Jaeck D, Doffoel M, Royer C, Soulier E, Schvoerer E, Schuster C, Stoll-Keller F, Bartenschlager R, Pietschmann T, Barth H, Baumert TF (2007) Scavenger receptor class B type I is a key host factor for hepatitis C virus infection required for an entry step closely linked to CD81. Hepatology 46:1722–1731

    Article  CAS  PubMed  Google Scholar 

  104. Zheng A, Yuan F, Li Y, Zhu F, Hou P, Li J, Song X, Ding M, Deng H (2007) Claudin-6 and claudin-9 function as additional coreceptors for hepatitis C virus. J Virol 81:12465–12471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zheng J, Xie Y, Campbell R, Song J, Massachi S, Razi M, Chiu R, Berenson J, Yang OO, Chen IS, Pang S (2005) Involvement of claudin-7 in HIV infection of CD4(−) cells. Retrovirology 2:79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Zona L, Lupberger J, Sidahmed-Adrar N, Thumann C, Harris HJ, Barnes A, Florentin J, Tawar RG, Xiao F, Turek M, Durand SC, Duong FH, Heim MH, Cosset FL, Hirsch I, Samuel D, Brino L, Zeisel MB, Le Naour F, McKeating JA, Baumert TF (2013) HRas signal transduction promotes hepatitis C virus cell entry by triggering assembly of the host tetraspanin receptor complex. Cell Host Microbe 13:302–313

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

TFB acknowledges support through funding from the European Union (ERC-2014-AdG-HEPCIR, FP7 HepaMAb, H2020 HEPCAR, and Interreg IV FEDER-Hepato-Regio-Net 2012), the US National Institutes of Health (1 U19 AI23862 01), the Agence Nationale de Recherches sur le SIDA (ANRS), the Direction Générale de l’Offre de Soins (A12027MS), Inserm, and the University of Strasbourg Foundation. This work has been published under the framework of the LABEX ANR-10-LABX-0028_HEPSYS and benefits from funding from the state managed by the French National Research Agency as part of the investments for the future program. CCC is supported by fellowships from the Canadian Institutes of Health Research (201411MFE- 338606-245517) and the Canadian Network on Hepatitis C.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Che C. Colpitts or Thomas F. Baumert.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. Thomas F. Baumert is a co-inventor on patent applications for claudin-1-targeting antibodies for prevention and treatment of HCV infection and liver disease.

Additional information

This article is published as part of the Special Issue on Physiology, Pathophysiology, and Clinical Impact of Claudins

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colpitts, C.C., Baumert, T.F. Claudins in viral infection: from entry to spread. Pflugers Arch - Eur J Physiol 469, 27–34 (2017). https://doi.org/10.1007/s00424-016-1908-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-016-1908-4

Keywords

Navigation