Skip to main content
Log in

Gastrointestinal motility and its enteric actors in mechanosensitivity: past and present

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Coordinated contractions of the smooth muscle layers of the gastrointestinal (GI) tract are required to produce motor patterns that ensure normal GI motility. The crucial role of the enteric nervous system (ENS), the intrinsic ganglionated network located within the GI wall, has long been recognized in the generation of the main motor patterns. However, devising an appropriate motility requires the integration of informations emanating from the lumen of the GI tract. As already found more than half a century ago, the ability of the GI tract to respond to mechanical forces such as stretch is not restricted to neuronal mechanisms. Instead, mechanosensitivity is now recognized as a property of several non-neuronal cell types, the excitability of which is probably involved in shaping the motor patterns. This brief review gives an overview on how mechanosensitivity of different cell types in the GI tract has been established and, whenever available, on what ionic conductances are involved in mechanotransduction and their potential impact on normal GI motility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Baker SA, Hennig GW, Salter AK, Kurahashi M, Ward SM, Sanders KM (2013) Distribution and Ca2+ signalling of fibroblast-like (PDGFR+) cells in the murine gastric fundus. J Physiol 591:6193–6208

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Bayliss WE, Starling EH (1899) The movements and innervation of the small intestine. J Physiol 24:99–143

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Beckett EA, McGeough CA, Sanders KM, Ward SM (2003) Pacing of interstitial cells of Cajal in the murine gastric antrum: neurally mediated and direct stimulation. J Physiol 553:545–559

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Berrier C, Pozza A, de Lacroix de Lavalette A, Chardonnet S, Mesneau A, Jaxel C, le Maire M, Ghazi A (2013) The purified mechanosensitive channel TREK-1 is directly sensitive to membrane tension. J Biol Chem 288:27307–27314

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Bertrand PP (2006) Real-time measurement of serotonin release and motility in guinea pig ileum. J Physiol 577:689–704

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Bertrand PP, Kunze WAA, Furness JB, Bornstein JC (2000) The terminals of myenteric intrinsic primary afferent neurons of the guinea-pig ileum are excited by 5-hydroxytryptamine acting at 5-hydroxytryptamine-3 receptors. Neuroscience 101:459–469

    CAS  PubMed  Google Scholar 

  7. Beyder A, Lees-Green R, Farrugia G (2013) Role of ion channel mechanosensitivity in the gut: mechano-electrical feedback exemplified by stretch-dependence of NaV1.5. In: Cheng LK, Pullan AJ, Farrugia G (eds) New advances in gastrointestinal motility research. Springer, New York, pp 7–27

    Google Scholar 

  8. Blackshaw LA, Brookes SJH, Grundy D, Schemann M (2007) Sensory transmission in the gastrointestinal tract. Neurogastroenterol Motil 19:1–19

    CAS  PubMed  Google Scholar 

  9. Boesmans W, Owsianik G, Tack J, Voets T, Vanden Berghe P (2011) TRP channels in neurogastroenterology: opportunities for therapeutic intervention. Br J Pharmacol 162:18–37

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Bolton TB, Prestwich SA, Zholos AV, Gordienko DV (1999) Excitation-contraction coupling in gastrointestinal and other smooth muscles. Annu Rev Physiol 61:85–115

    CAS  PubMed  Google Scholar 

  11. Brierley SM, Castro J, Harrington AM, Hughes PA, Page AJ, Rychkov GY, Blackshaw LA (2011) TRPA1 contributes to specific mechanically activated currents and sensory neuron mechanical hypersensitivity. J Physiol 589:3575–3593

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Brierley SM, Hughes PA, Page AJ, Kwan KY, Martin CM, O’Donnell TA, Cooper NJ, Harrington AM, Adam B, Liebregts T, Holtmann G, Corey DP, Rychkov GY, Blackshaw LA (2009) The ion channel TRPA1 is required for normal mechanosensation and is modulated by algesic stimuli. Gastroenterology 137:2084–2095

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Bülbring E (1955) Correlation between membrane potential, spike discharge and tension in smooth muscle. J Physiol 128:200–221

    PubMed Central  PubMed  Google Scholar 

  14. Bülbring E, Crema A (1958) Observations concerning the action of 5-hydroxytryptamine on the peristaltic reflex. Br J Pharmacol 13:444–457

    Google Scholar 

  15. Bülbring E, Crema A (1959) The release of 5-hydroxytryptamine in relation to pressure exerted on the intestinal mucosa. J Physiol 146:18–28

    PubMed Central  PubMed  Google Scholar 

  16. Bülbring E, Lin RC (1958) The effect of intraluminal application of 5-hydroxytryptamine and 5-hydroxytryptophan on peristalsis; the local production of 5-HT and its release in relation to intraluminal pressure and propulsive activity. J Physiol 140:381–407

    PubMed Central  PubMed  Google Scholar 

  17. Christensen AP, Corey DP (2007) TRP channels in mechanosensation: direct or indirect activation? Nat Rev Neurosci 8:510–521

    CAS  PubMed  Google Scholar 

  18. Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE, Patapoutian A (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Coste B, Xiao B, Santos JS, Syeda R, Grandl J, Spencer KS, Kim SE, Schmidt M, Mathur J, Dubin AE, Montal M, Patapoutian A (2012) Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483:176–181

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Dick GM, Bradley KK, Horowitz B, Hume JR, Sanders KM (1998) Functional and molecular identification of a novel chloride conductance in canine colonic smooth muscle. Am J Physiol 275:C940–C950

    CAS  PubMed  Google Scholar 

  21. Dogiel AS (1899) Über den Bau der Ganglien in den Geflechten des Darmes und der Gallenblase des Menschen und der Säugetiere. Arch Anat Physiol (Leipzig) Anat Abt Jg 1899:130–158

    Google Scholar 

  22. Doihara H, Nozawa K, Kawabata-Shoda E, Kojima R, Yokoyama T, Ito H (2009) Molecular cloning and characterization of dog TRPA1 and AITC stimulate the gastrointestinal motility through TRPA1 in conscious dogs. Eur J Pharmacol 617:124–129

    CAS  PubMed  Google Scholar 

  23. Farrugia G (1999) Ionic conductances in gastrointestinal smooth muscles and interstitial cells of Cajal. Annu Rev Physiol 61:45–84

    CAS  PubMed  Google Scholar 

  24. Farrugia G, Holm AN, Rich A, Sarr MG, Szurszewski JH, Rae JL (1999) A mechanosensitive calcium channel in human intestinal smooth muscle cells. Gastroenterology 117:900–905

    CAS  PubMed  Google Scholar 

  25. Fox EA, Phillips RJ, Byerly MS, Baronowsky EA, Chi MM, Powley TL (2002) Selective loss of vagal intramuscular mechanoreceptors in mice mutant for steel factor, the c-Kit receptor ligand. Anat Embryol (Berlin) 205:325–342

    Google Scholar 

  26. Fox EA, Phillips RJ, Martinson FA, Baronowsky EA, Powley TL (2001) C-Kit mutant mice have a selective loss of vagal intramuscular mechanoreceptors in the forestomach. Anat Embryol (Berlin) 204:11–26

    CAS  Google Scholar 

  27. Franks NP, Honoré E (2004) The TREK K2P channels and their role in general anaesthesia and neuroprotection. Trends Pharmacol Sci 25:601–608

    CAS  PubMed  Google Scholar 

  28. Furness JB (2006) The enteric nervous system. Furness JB (ed). Blackwell, Oxford

  29. Furness JB (2012) The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9:286–294

    CAS  PubMed  Google Scholar 

  30. Furness JB, Jones C, Nurgali K, Clerc N (2004) Intrinsic primary afferent neurons and nerve circuits within the intestine. Prog Neurobiol 72:143–164

    CAS  PubMed  Google Scholar 

  31. Furness JB, Kunze WAA, Bertrand PP, Clerc N, Bornstein JC (1998) Intrinsic primary afferent neurons of the intestine. Prog Neurobiol 54:1–18

    CAS  PubMed  Google Scholar 

  32. Furness JB, Kunze WA, Clerc N (1999) Nutrient tasting and signalling mechanisms in the gut. II. The intestine as a sensory organ. Am J Physiol 277:G922–G928

    CAS  PubMed  Google Scholar 

  33. Gabella G, Trigg P (1984) Size of neurons and glial cells in the enteric ganglia of mice, guinea-pigs, rabbits and sheep. J Neurocytol 13:49–71

    CAS  PubMed  Google Scholar 

  34. Gellens ME, George AL Jr, Chen LQ, Chahine M, Horn R, Barchi RL, Kallen RG (1992) Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. Proc Natl Acad Sci U S A 89:554–558

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Gershon MD, Tack J (2007) The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132:397–414

    CAS  PubMed  Google Scholar 

  36. Gil V, Gallego D, Moha Ou Maati H, Peyronnet R, Martínez-Cutillas M, Heurteaux C, Borsotto M, Jiménez M (2012) Relative contribution of SKCa and TREK1 channels in purinergic and nitrergic neuromuscular transmission in the rat colon. Am J Physiol 303:G412–G423

    CAS  Google Scholar 

  37. Goldin AL (2001) Resurgence of sodium channel research. Annu Rev Physiol 63:871–894

    CAS  PubMed  Google Scholar 

  38. Gulbransen BD, Sharkey KA (2012) Novel functional roles for enteric glia in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 9:625–632

    CAS  PubMed  Google Scholar 

  39. Hasler WL (2003) Motility of the small intestine and colon. In: Yamada T (ed) Textbook of gastroenterology, 4th edn. Lippincott Williams and Wilkins, Philadelphia, pp 220–247

    Google Scholar 

  40. Heredia DJ, Dickson EJ, Bayguinov PO, Hennig GW, Smith TK (2009) Localized release of serotonin (5-hydroxytryptamine) by a fecal pellet regulates migrating motor complexes in murine colon. Gastroenterology 136:1328–1338

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Heredia DJ, Gershon MD, Koh SD, Corrigan RD, Okamoto T, Smith TK (2013) Important role of mucosal serotonin in colonic propulsion and peristaltic reflexes: in vitro analyses in mice lacking tryptophan hydroxylase 1. J Physiol 591:5939–5957

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Hirst GD, Dickens EJ, Edwards FR (2002) Pacemaker shift in the gastric antrum of guinea-pigs produced by excitatory vagal stimulation involves intramuscular interstitial cells. J Physiol 541:917–928

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Hirst GDS, Holman ME, Spence I (1974) Two types of neurones in the myenteric plexus of duodenum in the guinea-pig. J Physiol 236:303–326

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Holm AN, Rich A, Miller SM, Strege P, Ou Y, Gibbons S, Sarr MG, Szurszewski JH, Rae JL, Farrugia G (2002) Sodium current in human jejunal circular smooth muscle cells. Gastroenterology 122:178–187

    CAS  PubMed  Google Scholar 

  45. Holm AN, Rich A, Sarr MG, Farrugia G (2000) Whole cell current and membrane potential regulation by a human smooth muscle mechanosensitive calcium channel. Am J Physiol 279:G1155–G1161

    CAS  Google Scholar 

  46. Horiguchi K, Semple GS, Sanders KM, Ward SM (2001) Distribution of pacemaker function through the tunica muscularis of the canine gastric antrum. J Physiol 537:237–250

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Horowitz B, Ward SM, Sanders KM (1999) Cellular and molecular basis for electrical rhythmicity in gastrointestinal muscles. Annu Rev Physiol 61:19–43

    CAS  PubMed  Google Scholar 

  48. Huizinga JD, Reed DE, Berezin I, Wang XY, Valdez DT, Liu LW, Diamant NE (2008) Survival dependency of intramuscular ICC on vagal afferent nerves in the cat esophagus. Am J Physiol 294:R302–R310

    CAS  Google Scholar 

  49. Hwang SJ, O’Kane N, Singer C, Ward SM, Sanders KM, Koh SD (2008) Block of inhibitory junction potentials and TREK-1 channels in murine colon by Ca2+ store-active drugs. J Physiol 586:1169–1184

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Keating DJ, Spencer NJ (2010) Release of 5-hydroxytryptamine from the mucosa is not required for the generation or propagation of colonic migrating motor complexes. Gastroenterology 138:659–670

    CAS  PubMed  Google Scholar 

  51. Klein S, Seidler B, Kettenberger A, Sibaev A, Rohn M, Feil R, Allescher HD, Vanderwinden JM, Hofmann F, Schemann M, Rad R, Storr MA, Schmid RM, Schneider G, Saur D (2013) Interstitial cells of Cajal integrate excitatory and inhibitory neurotransmission with intestinal slow-wave activity. Nat Commun 4:1630

    PubMed  Google Scholar 

  52. Koh SD, Campbell JD, Carl A, Sanders KM (1995) Nitric oxide activates multiple potassium channels in canine colonic smooth muscle. J Physiol 489:735–743

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Koh SD, Monaghan K, Ro S, Mason HS, Kenyon JL, Sanders KM (2001) Novel voltage-dependent non-selective cation conductance in murine colonic myocytes. J Physiol 533:341–355

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Koh SD, Monaghan K, Sergeant GP, Ro S, Walker RL, Sanders KM, Horowitz B (2001) TREK-1 regulation by nitric oxide and cGMP-dependent protein kinase. An essential role in smooth muscle inhibitory neurotransmission. J Biol Chem 276:44338–44346

    CAS  PubMed  Google Scholar 

  55. Koh SD, Sanders KM (2001) Stretch-dependent potassium channels in murine colonic smooth muscle cells. J Physiol 533:155–163

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Koh SD, Ward SM, Sanders KM (2012) Ionic conductances regulating the excitability of colonic smooth muscles. Neurogastroenterol Motil 24:705–718

    CAS  PubMed  Google Scholar 

  57. Komuro T (2006) Structure and organization of interstitial cells of Cajal in the gastrointestinal tract. J Physiol 576:653–658

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Kraichely RE, Farrugia G (2007) Mechanosensitive ion channels in interstitial cells of Cajal and smooth of the gastrointestinal tract. Neurogastroenterol Motil 19:245–252

    CAS  PubMed  Google Scholar 

  59. Kunze WA, Clerc N, Bertrand PP, Furness JB (1999) Contractile activity in intestinal muscle evokes action potential discharge in guinea-pig myenteric neurons. J Physiol 517:547–561

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Kunze WA, Clerc N, Furness JB, Gola M (2000) The soma and neurites of primary afferent neurons in the guinea-pig intestine respond differentially to deformation. J Physiol 526:375–385

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Kunze WA, Furness JB (1999) The enteric nervous system and regulation of intestinal motility. Annu Rev Physiol 61:117–142

  62. Kunze WA, Furness JB, Bertrand PP, Bornstein JC (1998) Intracellular recording from myenteric neurons of the guinea-pig ileum that respond to stretch. J Physiol 506:827–842

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Lee HT, Hennig GW, Fleming NW, Keef KD, Spencer NJ, Ward SM, Sanders KM, Smith TK (2007) Septal interstitial cells of Cajal conduct pacemaker activity to excite muscle bundles in human jejunum. Gastroenterology 133:907–917

    PubMed Central  PubMed  Google Scholar 

  64. Lentle RG, Reynolds GW, Janssen PWM (2013) Gastrointestinal tone; its genesis and contribution to the physiological processes of digestion. Neurogastroenterol Motil 25:931–942

    CAS  PubMed  Google Scholar 

  65. Lesage F, Lazdunski M (2000) Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol 279:F793–F801

    CAS  Google Scholar 

  66. Locke GR III, Ackerman M, Zinsmeister A, Thapa P, Farrugia G (2006) Gastrointestinal symptoms in families of patients with an SCN5A-encoded cardiac channelopathy: evidence for an intestinal channelopathy. Am J Gastroenterol 101:1299–1304

    CAS  PubMed  Google Scholar 

  67. Lyford GL, Farrugia G (2003) Ion channels in gastrointestinal smooth muscle and interstitial cells of Cajal. Curr Opin Pharmacol 3:583–587

    CAS  PubMed  Google Scholar 

  68. Lyford GL, Strege PR, Shepard A, Ou Y, Ermilov L, Miller SM, Gibbons SJ, Rae JL, Szurszewski JH, Farrugia G (2002) alpha(1C) (Ca(V)1.2) L-type calcium channel mediates mechanosensitive calcium regulation. Am J Physiol 283:C1001–C1008

    CAS  Google Scholar 

  69. Maeda H, Yamagata A, Nishikawa S, Yoshinaga K, Kobayashi S, Nishi K, Nishikawa S (1992) Requirement of c-kit for development of intestinal pacemaker system. Development 116:369–375

    CAS  PubMed  Google Scholar 

  70. Maingret F, Patel AJ, Lesage F, Lazdunski M, Honoré E (1999) Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J Biol Chem 274:26691–26696

    CAS  PubMed  Google Scholar 

  71. Maltsev VA, Undrovinas AI (1997) Cytoskeleton modulates coupling between availability and activation of cardiac sodium channel. Am J Physiol 273:H1832–H1840

    CAS  PubMed  Google Scholar 

  72. Mammoto A, Mammoto T, Ingber DE (2012) Mechanosensitive mechanisms in transcriptional regulation. J Cell Sci 125:3061–3073

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Mawe GM, Coates MD, Moses PL (2006) Review article: intestinal serotonin signalling in irritable bowel syndrome. Aliment Pharmacol Ther 23:1067–1676

    CAS  PubMed  Google Scholar 

  74. Mazzuoli G, Schemann M (2009) Multifunctional rapidly adapting mechanosensitive enteric neurons (RAMEN) in the myenteric plexus of the guinea pig ileum. J Physiol 587:4681–4694

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Mazzuoli G, Schemann M (2012) Mechanosensitive enteric neurons in the myenteric plexus of the mouse intestine. PLoS One 7:e39887

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Moshayedi P, Costa LF, Christ A, Lacour SP, Fawcett J, Guck J, Franze K (2010) Mechanosensitivity of astrocytes on optimized polyacrylamide gels analyzed by quantitative morphometry. J Phys:Condens Matter 22:194114

    PubMed  Google Scholar 

  77. Neya T, Mizutani M, Yamasato T (1993) Role of 5-HT3 receptors in peristaltic reflex elicited by stroking the mucosa in the canine jejunum. J Physiol 471:159–173

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Nozawa K, Kawabata-Shoda E, Doihara H, Kojima R, Okada H, Mochizuki S, Sano Y, Inamura K, Matsushime H, Koizumi T, Yokoyama T, Ito H (2009) TRPA1 regulates gastrointestinal motility through serotonin release from enterochromaffin cells. Proc Natl Acad Sci U S A 106:3408–3413

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Ou Y, Gibbons SJ, Miller SM, Strege PR, Rich A, Distad MA, Ackerman MJ, Rae JL, Szurszewski JH, Farrugia G (2002) SCN5A is expressed in human jejunal circular smooth muscle cells. Neurogastroenterol Motil 14:477–486

    CAS  PubMed  Google Scholar 

  80. Ou Y, Strege P, Miller SM, Makielski J, Ackerman M, Gibbons SJ, Farrugia G (2003) Syntrophin gamma 2 regulates SCN5A gating by a PDZ domain-mediated interaction. J Biol Chem 278:1915–1923

    CAS  PubMed  Google Scholar 

  81. Park KJ, Baker SA, Cho SY, Sanders KM, Koh SD (2005) Sulfur-containing amino acids block stretch-dependent K+ channels and nitrergic responses in the murine colon. Br J Pharmacol 144:1126–1137

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Park SJ, McKay CM, Zhu Y, Huizinga JD (2005) Volume-activated chloride currents in interstitial cells of Cajal. Am J Physiol 289:G791–G797

    CAS  Google Scholar 

  83. Powley TL, Phillips RJ (2011) Vagal intramuscular array afferents form complexes with interstitial cells of Cajal in gastrointestinal smooth muscle: analogues of muscle spindle organs? Neuroscience 186:188–200

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Powley TL, Wang XY, Fox EA, Phillips RJ, Liu LW, Huizinga JD (2008) Ultrastructural evidence for communication between intramuscular vagal mechanoreceptors and interstitial cells of Cajal in the rat fundus. Neurogastroenterol Motil 20:69–79

    CAS  PubMed  Google Scholar 

  85. Racké K, Reimann A, Schwörer H, Kilbinger H (1996) Regulation of 5-HT release from enterochromaffin cells. Behav Brain Res 73:83–87

    PubMed  Google Scholar 

  86. Rindi G, Leiter AB, Kopin AS, Bordi C, Solcia E (2004) The “normal” endocrine cell of the gut: changing concepts and new evidences. Ann N Y Acad Sci 1014:1–12

    CAS  PubMed  Google Scholar 

  87. Rühl A, Nasser Y, Sharkey KA (2004) Enteric glia. Neurogastroenterol Motil 16:44–49

    PubMed  Google Scholar 

  88. Rumessen JJ, Thuneberg L, Mikkelsen HB (1982) Nerve terminals and interstitial cell-types in plexus muscularis profundus (mouse small intestine). Scand J Gastroenterol 71:145–146

    CAS  Google Scholar 

  89. Sackin H (1995) Mechanosensitive channels. Annu Rev Physiol 57:333–353

    CAS  PubMed  Google Scholar 

  90. Sanders KM (1992) Ionic mechanisms of electrical rhythmicity in gastrointestinal smooth muscles. Annu Rev Physiol 54:439–453

    CAS  PubMed  Google Scholar 

  91. Sanders KM (2008) Regulation of smooth muscle excitation and contraction. Neurogastroenterol Motil 20:39–53

    CAS  PubMed  Google Scholar 

  92. Sanders KM, Hwang SJ, Ward SM (2010) Neuroeffector apparatus in gastrointestinal smooth muscle organs. J Physiol 588:4621–4639

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Sanders KM, Koh SD (2006) Two-pore-domain potassium channels in smooth muscles: new components of myogenic regulation. J Physiol 570:37–43

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Sanders KM, Koh SD, Ward SM (2006) Interstitial cells of Cajal as pacemakers in the gastrointestinal tract. Annu Rev Physiol 68:307–343

    CAS  PubMed  Google Scholar 

  95. Sanders KM, Ward SM (2007) Kit mutants and gastrointestinal physiology. J Physiol 578:33–42

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Sarna SK (1985) Cyclic motor activity; migrating motor complex: 1985. Gastroenterology 89:894–913

    CAS  PubMed  Google Scholar 

  97. Schemann M, Mazzuoli G (2010) Multifunctional mechanosensitive neurons in the enteric nervous system. Auton Neurosci 153:21–25

    PubMed  Google Scholar 

  98. Smith TK, Oliver GR, Hennig GW, O’Shea DM, Vanden Berghe P, Kang SH, Spencer NJ (2003) A smooth muscle tone-dependent stretch-activated migrating motor pattern in isolated guinea-pig distal colon. J Physiol 551:955–969

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Smith TK, Spencer NJ, Hennig GW, Dickson EJ (2007) Recent advances in enteric neurobiology: mechanosensitive interneurons. Neurogastroenterol Motil 19:869–878

    CAS  PubMed  Google Scholar 

  100. Spencer NJ (2001) Control of migrating motor activity in the colon. Curr Opin Pharmacol 6:604–610

    Google Scholar 

  101. Spencer NJ (2013) Characteristics of colonic migrating motor complexes in neuronal NOS (nNOS) knockout mice. Front Neurosci 7:184

    PubMed Central  PubMed  Google Scholar 

  102. Spencer NJ, Smith TK (2004) Mechanosensory S-neurons rather than AH-neurons appear to generate a rhythmic motor pattern in guinea-pig distal colon. J Physiol 558:577–596

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Spencer NJ, Smith CB, Smith TK (2001) Role of muscle tone in peristalsis in guinea-pig small intestine. J Physiol 530:295–306

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Strege PR, Holm AN, Rich A, Miller SM, Ou Y, Sarr MG, Farrugia G (2003) Cytoskeletal modulation of sodium current in human jejunal circular smooth muscle cells. Am J Physiol 284:C60–C66

    CAS  Google Scholar 

  105. Strege PR, Mazzone A, Kraichely RE, Sha L, Holm AN, Ou Y, Lim I, Gibbons SJ, Sarr MG, Farrugia G (2007) Species dependent expression of intestinal smooth muscle mechanosensitive sodium channels. Neurogastroenterol Motil 19:135–143

    CAS  PubMed  Google Scholar 

  106. Strege PR, Ou Y, Sha L, Rich A, Gibbons SJ, Szurszewski JH, Sarr MG, Farrugia G (2003) Sodium current in human intestinal interstitial cells of Cajal. Am J Physiol 285:G1111–G1121

    CAS  Google Scholar 

  107. Szurszewski JH (1969) A migrating electric complex of canine small intestine. Am J Physiol 217:1757–1763

    CAS  PubMed  Google Scholar 

  108. Tharayil VS, Wouters MM, Stanich JE et al (2010) Lack of serotonin 5-HT2B receptor alters proliferation and network volume of interstitial cells of Cajal in vivo. Neurogastroenterol Motil 22:462–469

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Thuneberg L (1989) Interstitial cells of Cajal. In: Wood JD (ed) Handbook of physiology: the gastrointestinal system, vol 1. American Physiological Society, Bethesda, pp 349–386

    Google Scholar 

  110. Tsvilovskyy VV, Zholos AV, Aberle T, Philipp SE, Dietrich A, Zhu MX, Birnbaumer L, Freichel M, Flockerzi V (2009) Deletion of TRPC4 and TRPC6 in mice impairs smooth muscle contraction and intestinal motility in vivo. Gastroenterology 137:1415–1424

    PubMed Central  PubMed  Google Scholar 

  111. Vilceanu D, Stucky CL (2010) TRPA1 mediates mechanical currents in the plasma membrane of mouse sensory neurons. PLoS One 5:e12177

    PubMed Central  PubMed  Google Scholar 

  112. Wang W, Huang H, Hou D, Liu P, Wei H, Fu X, Niu W (2010) Mechanosensitivity of STREX-lacking BKCa channels in the colonic smooth muscle of the mouse. Am J Physiol 299:G1231–G1240

    CAS  Google Scholar 

  113. Waniishi Y, Inoue R, Ito Y (1997) Preferential potentiation by hypotonic cell swelling of muscarinic cation current in guinea pig ileum. Am J Physiol 272:C240–C253

    CAS  PubMed  Google Scholar 

  114. Ward SM (2000) Interstitial cells of Cajal in enteric neurotransmission. Gut 47:40–43

    Google Scholar 

  115. Ward SM, Bayguinov J, Won KJ, Grundy D, Berthoud HR (2003) Distribution of the vanilloid receptor (VR1) in the gastrointestinal tract. J Comp Neurol 465:121–135

    PubMed  Google Scholar 

  116. Ward SM, Sanders KM (2006) Involvement of intramuscular interstitial cells of Cajal in neuroeffector transmission in the gastrointestinal tract. J Physiol 576:675–682

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Ward SM, Sanders KM, Hirst GG (2004) Role of interstitial cells of Cajal in neural control of gastrointestinal smooth muscles. Neurogastroenterol Motil 16:112–117

    PubMed  Google Scholar 

  118. Won KJ, Sanders KM, Ward SM (2005) Interstitial cells of Cajal mediate mechanosensitive responses in the stomach. Proc Natl Acad Sci U S A 102:14913–14918

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Won KJ, Sanders KM, Ward SM (2013) Stretch-dependent sensitization of post-junctional neural effectors in colonic muscles. Neurogastroenterol Motil 25:e101–e113

    PubMed Central  PubMed  Google Scholar 

  120. Xu WX, Kim SJ, Kim SJ, So I, Kang TM, Rhee JC, Kim KW (1996) Effect of stretch on calcium channel currents recorded from the antral circular myocytes of guinea-pig stomach. Pflugers Arch 432:159–164

    CAS  PubMed  Google Scholar 

  121. Xu WX, Kim SJ, So I, Kang TM, Rhee JC, Kim KW (1997) Volume-sensitive chloride current activated by hyposmotic swelling in antral gastric myocytes of the guinea-pig. Pflugers Arch - Eur J Physiol 435:9–19

    CAS  Google Scholar 

  122. Zhang Y, Miller DV, Paterson WG (2010) TREK-1 channels do not mediate nitrergic neurotransmission in circular smooth muscle from the lower oesophageal sphincter. Br J Pharmacol 159:362–373

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Centre National de la Recherche Scientifique (CNRS) and Aix Marseille Université. The author would like to thank Nadine Clerc for critical comments on previous drafts of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Mazet.

Additional information

This article is published as part of the Special Issue on Physiological Aspects of Mechano-Sensing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazet, B. Gastrointestinal motility and its enteric actors in mechanosensitivity: past and present. Pflugers Arch - Eur J Physiol 467, 191–200 (2015). https://doi.org/10.1007/s00424-014-1635-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1635-7

Keywords

Navigation