Skip to main content

Advertisement

Log in

Kv1.3 channels modulate human vascular smooth muscle cells proliferation independently of mTOR signaling pathway

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Phenotypic modulation (PM) of vascular smooth muscle cells (VSMCs) is central to the process of intimal hyperplasia which constitutes a common pathological lesion in occlusive vascular diseases. Changes in the functional expression of Kv1.5 and Kv1.3 currents upon PM in mice VSMCs have been found to contribute to cell migration and proliferation. Using human VSMCs from vessels in which unwanted remodeling is a relevant clinical complication, we explored the contribution of the Kv1.5 to Kv1.3 switch to PM. Changes in the expression and the functional contribution of Kv1.3 and Kv1.5 channels were studied in contractile and proliferating VSMCs obtained from human donors. Both a Kv1.5 to Kv1.3 switch upon PM and an anti-proliferative effect of Kv1.3 blockers on PDGF-induced proliferation were observed in all vascular beds studied. When investigating the signaling pathways modulated by the blockade of Kv1.3 channels, we found that anti-proliferative effects of Kv1.3 blockers on human coronary artery VSMCs were occluded by selective inhibition of MEK/ERK and PLCγ signaling pathways, but were unaffected upon blockade of PI3K/mTOR pathway. The temporal course of the anti-proliferative effects of Kv1.3 blockers indicates that they have a role in the late signaling events essential for the mitogenic response to growth factors. These findings establish the involvement of Kv1.3 channels in the PM of human VSMCs. Moreover, as current therapies to prevent restenosis rely on mTOR blockers, our results provide the basis for the development of novel, more specific therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Beech DJ (2007) Ion channel switching and activation in smooth-muscle cells of occlusive vascular diseases. Biochem Soc Trans 035:890–894

    Article  CAS  Google Scholar 

  2. Beeton C, Wulff H, Standifer NE, Azam P, Mullen KM, Pennington MW, Kolski-Andreaco A, Wei E, Grino A, Counts DR, Wang PH et al (2006) Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci U S A 103:17414–17419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Caglayan E, Vantler M, Leppänen O, Gerhardt F, Mustafov L, ten Freyhaus H, Kappert K, Odenthal M, Zimmermann WH, Tallquist MD, Rosenkranz S (2011) Disruption of platelet-derived growth factor-dependent phosphatidylinositol 3-kinase and phospholipase C γ1 activity abolishes vascular smooth muscle cell proliferation and migration and attenuates neointima formation in vivo. J Am Coll Cardiol 57:2527–2538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Cahalan MD, Chandy KG, DeCoursey TE, Gupta S (1985) A voltage-gated potassium channel in human T lymphocytes. J Physiol 358:197–237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Campbell GR, Campbell JH (1985) Smooth muscle phenotypic changes in arterial wall homeostasis: implications for the pathogenesis of atherosclerosis. Exp Mol Pathol 42:139–162

    Article  CAS  PubMed  Google Scholar 

  6. Chen TT, Luykenaar KD, Walsh EJ, Walsh MP, Cole WC (2006) Key role of Kv1 channels in vasoregulation. Circ Res 99:53–60

    Article  CAS  PubMed  Google Scholar 

  7. Cidad P, Jimenez-Perez L, Garcia-Arribas D, Miguel-Velado E, Tajada S, Ruiz-McDavitt C, Lopez-Lopez JR, Perez-Garcia MT (2012) Kv1.3 channels can modulate cell proliferation during phenotypic switch by an ion-flux independent mechanism. Arterioscler Thromb Vasc Biol 32:1299–1307

    Article  CAS  PubMed  Google Scholar 

  8. Cidad P, Moreno-Dominguez A, Novensa L, Roque M, Barquin L, Heras M, Perez-Garcia MT, Lopez-Lopez JR (2010) Characterization of ion channels involved in the proliferative response of femoral artery smooth muscle cells. Arterioscler Thromb Vasc Biol 30:1203–1211

    Article  CAS  PubMed  Google Scholar 

  9. DeCoursey TE, Chandy KG, Gupta S, Cahalan MD (1984) Voltage-gated K + channels in human lymphocyte-T—a role in mitogenesis. Nature 307:465–468

    Article  CAS  PubMed  Google Scholar 

  10. Eisen HJ, Tuzcu EM, Dorent R, Kobashigawa J, Mancini D, Valantine-von Kaeppler HA, Starling RC, Sörensen K, Hummel M, Lind JM, Abeywickrama KH et al (2003) Everolimus for the prevention of allograft rejection and vasculopathy in cardiac-transplant recipients. N Engl J Med 349:847–858

    Article  CAS  PubMed  Google Scholar 

  11. Erdogan A, Schaefer CA, Schaefer M, Luedders DW, Stockhausen F, Abdallah Y, Schaefer C, Most AK, Tillmanns H, Piper HM, Kuhlmann CR (2005) Margatoxin inhibits VEGF-induced hyperpolarization, proliferation and nitric oxide production of human endothelial cells. J Vasc Res 42:368–376

    Article  CAS  PubMed  Google Scholar 

  12. Formica RN Jr, Lorber KM, Friedman AL, Bia MJ, Lakkis F, Smith JD, Lorber MI (2004) The evolving experience using everolimus in clinical transplantation. Transplant Proc 36:S495–S499

    Article  Google Scholar 

  13. Garcia-Calvo M, Leonard RJ, Novick J, Stevens SP, Schmalhofer W, Kaczorowski GJ, Garcia ML (1993) Purification, characterization, and biosynthesis of margatoxin, a component of Centruroides margaritatus venom that selectively inhibits voltage-dependent potassium channels. J Biol Chem 268:18866–18874

    CAS  PubMed  Google Scholar 

  14. Hafizi S, Mordi VN, Andersson KM, Chester AH, Yacoub MH (2004) Differential effects of rapamycin, cyclosporine A, and FK506 on human coronary artery smooth muscle cell proliferation and signalling. Vasc Pharmacol 41:167–176

    Article  CAS  Google Scholar 

  15. Hafizi S, Wang X, Chester AH, Yacoub MH, Proud CG (2004) ANG II activates effectors of mTOR via PI3-K signaling in human coronary smooth muscle cells. Am J Physiol Heart Circ Physiol 287:H1232–H1238

    Article  CAS  PubMed  Google Scholar 

  16. Hegle AP, Marble DD, Wilson GF (2006) A voltage-driven switch for ion-independent signaling by ether-a-go-go K + channels. Proc Natl Acad Sci U S A 103:2886–2891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Heldin CH, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79:1283–1316

    CAS  PubMed  Google Scholar 

  18. Hughes AD, Clunn GF, Refson J, Demoliou-Mason C (1996) Platelet-derived growth factor (PDGF): actions and mechanisms in vascular smooth muscle. Gen Pharmacol 27:1079–1089

    Article  CAS  PubMed  Google Scholar 

  19. Isoda K, Shiigai M, Ishigami N, Matsuki T, Horai R, Nishikawa K, Kusuhara M, Nishida Y, Iwakura Y, Ohsuzu F (2003) Deficiency of interleukin-1 receptor antagonist promotes neointimal formation after injury. Circulation 108:516–518

    Article  CAS  PubMed  Google Scholar 

  20. Jia L, Wang R, Tang DD (2012) Abl regulates smooth muscle cell proliferation by modulating actin dynamics and ERK1/2 activation. Am J Physiol Cell Physiol 302:C1026–C1034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Jones SM, Kazlauskas A (2001) Growth factor-dependent signaling and cell cycle progression. FEBS Lett 490:110–116

    Article  CAS  PubMed  Google Scholar 

  22. Jones SM, Kazlauskas A (2001) Growth-factor-dependent mitogenesis requires two distinct phases of signalling. Nat Cell Biol 3:165–172

    Article  CAS  PubMed  Google Scholar 

  23. Jurek A, Heldin CH, Lennartsson J (2011) Platelet-derived growth factor-induced signaling pathways interconnect to regulate the temporal pattern of Erk1/2 phosphorylation. Cell Signal 23:280–287

    Article  CAS  PubMed  Google Scholar 

  24. Kohler R, Wulff H, Eichler I, Kneifel M, Neumann D, Knorr A, Grgic I, Kampfe D, Si H, Wibawa J, Real R et al (2003) Blockade of the intermediate-conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis. Circulation 108:1119–1125

    Article  PubMed  Google Scholar 

  25. Liou SF, Yeh JL, Liang JC, Chiu CC, Lin YT, Chen IJ (2004) Inhibition of mitogen-mediated proliferation of rat vascular smooth muscle cells by labedipinedilol-A through PKC and ERK 1/2 pathway. J Cardiovasc Pharmacol 44:539–551

    Article  CAS  PubMed  Google Scholar 

  26. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  27. Miguel-Velado E, Moreno-Dominguez A, Colinas O, Cidad P, Heras M, Perez-Garcia MT, López-López JR (2005) Contribution of Kv channels to phenotypic remodeling of human uterine artery smooth muscle cells. Circ Res 97:1280–1287

    Article  CAS  PubMed  Google Scholar 

  28. Millership JE, Devor DC, Hamilton KL, Balut CM, Bruce JIE, Fearon IM (2011) Calcium-activated K + channels increase cell proliferation independent of K + conductance. Am J Physiol Cell Physiol 300:C792–C802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Millette E, Rauch BH, Kenagy RD, Daum G, Clowes AW (2006) Platelet-derived growth factor-BB transactivates the fibroblast growth factor receptor to induce proliferation in human smooth muscle cells. Trends Cardiovasc Med 16:25–28

    Article  CAS  PubMed  Google Scholar 

  30. Moreno-Dominguez A, Cidad P, Miguel-Velado E, Lopez-Lopez JR, Perez-Garcia MT (2009) De novo expression of Kv6.3 contributes to changes in vascular smooth muscle cell excitability in a hypertensive mice strain. J Physiol 587:625–640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801

    Article  CAS  PubMed  Google Scholar 

  32. Pardo LA (2004) Voltage-gated potassium channels in cell proliferation. Physiology 19:285–292

    Article  CAS  PubMed  Google Scholar 

  33. Roche S, Koegl M, Courtneidge SA (1994) The phosphatidylinositol 3-kinase alpha is required for DNA synthesis induced by some, but not all, growth factors. Proc Natl Acad Sci U S A 91:9185–9189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Roovers K, Assoian RK (2000) Integrating the MAP kinase signal into the G1 phase cell cycle machinery. Bioessays 22:818–826

    Article  CAS  PubMed  Google Scholar 

  35. Sabri A, Govindarajan G, Griffin TM, Byron KL, Samarel AM, Lucchesi PA (1998) Calcium- and protein kinase -dependent activation of the tyrosine kinase PYK2 by angiotensin II in vascular smooth muscle. Circ Res 83:841–851

    Article  CAS  PubMed  Google Scholar 

  36. Schmitz A, Sankaranarayanan A, Azam P, Schmidt-Lassen K, Homerick D, Hansel W, Wulff H (2005) Design of PAP-1, a selective small molecule Kv1.3 blocker, for the suppression of effector memory T cells in autoimmune diseases. Mol Pharmacol 68:1254–1270

    Article  CAS  PubMed  Google Scholar 

  37. Si H, Grgic I, Heyken WT, Maier T, Hoyer J, Reusch HP, Köhler R (2006) Mitogenic modulation of Ca2+-activated K+ channels in proliferating A7r5 vascular smooth muscle cells. Br J Pharmacol 148:909–917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Stehlik J, Edwards LB, Kucheryavaya AY, Benden C, Christie JD, Dipchand AI, Dobbels F, Kirk R, Rahmel AO, Hertz MI (2012) The registry of the international society for heart and lung transplantation: 29th official adult heart transplant report—2012. J Heart Lung Transplant 31:1052–1064

    Article  PubMed  Google Scholar 

  39. Tajada S, Cidad P, Moreno-Domínguez A, Pérez-García MT, López-López JR (2012) High blood pressure associates with the remodelling of inward rectifier K+ channels in mice mesenteric vascular smooth muscle cells. J Physiol 590:6075–6091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Tallquist M, Kazlauskas A (2004) PDGF signaling in cells and mice. Cytokine Growth Factor Rev 15:205–213

    Article  CAS  PubMed  Google Scholar 

  41. Tharp DL, Bowles DK (2009) The intermediate-conductance Ca2+-activated K+ channel (KCa3.1) in vascular disease. Cardiovasc Hematol Agents Med Chem 7:1–11

    Article  CAS  PubMed  Google Scholar 

  42. Tharp DL, Wamhoff BR, Wulff H, Raman G, Cheong A, Bowles DK (2008) Local delivery of the KCa3.1 blocker, TRAM-34, prevents acute angioplasty-induced coronary smooth muscle phenotypic modulation and limits stenosis. Arterioscler Thromb Vasc Biol 28:1084–1089

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Wulff H, Castle NA, Pardo LA (2009) Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov 8:982–1001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Zhan Y, Kim S, Yasumoto H, Namba M, Miyazaki H, Iwao H (2002) Effects of dominant-negative c-Jun on platelet-derived growth factor-induced vascular smooth muscle cell proliferation. Arterioscler Thromb Vasc Biol 22:82–88

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Rodrigo de Pedro for the excellent technical assistance.

Funding

Supported by grants from the Ministerio de Economía y Competitividad, Instituto de Salud Carlos III (RIC RD12/0042/0006, Red Heracles), Ministerio de Ciencia e Innovación (BFU2010-15898 to MTPG), Junta de Castilla y León (VA094A11-2 to, JRLL), and Fondo de Investigaciones Sanitarias (FIS PI11/00225 to MR).

Ethical standard

For human samples, informed consent was given prior to inclusion. Protocols conforming the Declaration of Helsinki were approved by the Human Investigation Ethics Committees of the respective Hospitals.

All the experimental work performed complies with the Spanish legislation.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Teresa Pérez-García.

Additional information

Pilar Cidad and Eduardo Miguel-Velado equal contributors

M. Teresa Pérez-García and José Ramón López-López shared last authorship

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cidad, P., Miguel-Velado, E., Ruiz-McDavitt, C. et al. Kv1.3 channels modulate human vascular smooth muscle cells proliferation independently of mTOR signaling pathway. Pflugers Arch - Eur J Physiol 467, 1711–1722 (2015). https://doi.org/10.1007/s00424-014-1607-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1607-y

Keywords

Navigation