Skip to main content

Advertisement

Log in

Adult cardiac fibroblast proliferation is modulated by calcium/calmodulin-dependent protein kinase II in normal and hypertrophied hearts

  • Molecular and cellular mechanisms of disease
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Increased adult cardiac fibroblast proliferation results in an increased collagen deposition responsible for the fibrosis accompanying pathological remodelling of the heart. The mechanisms regulating cardiac fibroblast proliferation remain poorly understood. Using a minimally invasive transverse aortic banding (MTAB) mouse model of cardiac hypertrophy, we have assessed fibrosis and cardiac fibroblast proliferation. We have investigated whether calcium/calmodulin-dependent protein kinase IIδ (CaMKIIδ) regulates proliferation in fibroblasts isolated from normal and hypertrophied hearts. It is known that CaMKIIδ plays a central role in cardiac myocyte contractility, but nothing is known of its role in adult cardiac fibroblast function. The MTAB model used here produces extensive hypertrophy and fibrosis. CaMKIIδ protein expression and activity is upregulated in MTAB hearts and, specifically, in cardiac fibroblasts isolated from hypertrophied hearts. In response to angiotensin II, cardiac fibroblasts isolated from MTAB hearts show increased proliferation rates. Inhibition of CaMKII with autocamtide inhibitory peptide inhibits proliferation in cells isolated from both sham and MTAB hearts, with a significantly greater effect evident in MTAB cells. These results are the first to show selective upregulation of CaMKIIδ in adult cardiac fibroblasts following cardiac hypertrophy and to assign a previously unrecognised role to CaMKII in regulating adult cardiac fibroblast function in normal and diseased hearts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AIP:

Autocamtide inhibitory peptide

BW:

Body weight

CaMKII:

Calcium/calmodulin-dependent protein kinase II

FS:

Fractional shortening

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

HW:

Heart weight

LVEDD:

Left ventricular end-diastolic dimension

LVESD:

Left ventricular end-systolic dimension

LVEDP:

Left ventricular end-diastolic pressure

MTAB:

Minimally invasive transverse aortic banding

References

  1. Anderson ME, Heller Brown J, Bers DM (2011) CaMKII in myocardial hypertrophy and heart failure. J Mol Cell Cardiol 51:468–473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Backs J, Backs T, Neef S, Kreussner MM, Lehmann LH, Patrick DM et al (2009) The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci USA 106:2342–2347

    Article  CAS  PubMed  Google Scholar 

  3. Baudino T, Carver W, Giles W, Borg TK (2006) Cardiac fibroblasts: friend or foe? Am J Physiol Heart Circ Physiol 291:H1015–H1026

    Article  CAS  PubMed  Google Scholar 

  4. Colomer JM, Mao L, Rockman HA, Means AR (2003) Pressure overload selectively up-regulates Ca2+/calmodulin-dependent protein kinase II in vivo. Mol Endocrinol 17:183–192

    Article  CAS  PubMed  Google Scholar 

  5. Currie S, Smith GL (1999) Calcium/calmodulin-dependent protein kinase II activity is increased in sarcoplasmic reticulum from coronary artery ligated rabbit hearts. FEBS Lett 459:244–248

    Article  CAS  PubMed  Google Scholar 

  6. Currie S, Quinn FR, Sayeed RA, Duncan AM, Kettlewell S, Smith GL (2005) Selective down-regulation of sub-endocardial ryanodine receptor expression in a rabbit model of left ventricular dysfunction. J Mol Cell Cardiol 39:309–317

    Article  CAS  PubMed  Google Scholar 

  7. Currie S (2009) Ryanodine receptor phosphorylation by CaMKII: getting the balance right. Front Biosc 14:5134–5156

    Article  CAS  Google Scholar 

  8. Currie S, Elliott EB, Smith GL, Loughrey CM (2011) Two candidates at the heart of dysfunction: the ryanodine receptor and CaMKII as potential targets for therapeutic intervention—an in vivo perspective. Pharm Ther 131:204–220

    Article  CAS  Google Scholar 

  9. Diez J, Lopez B, Gonzalez A, Querejeta R (2007) The role of the myocardial collagen network in hypertensive heart disease. Curr Hyperten Rev 3:1–7

    Article  CAS  Google Scholar 

  10. Dybkova N, Sedej S, Napolitano C, Neef S, Rokita AG, Hunlich M et al (2011) Overexpression of CaMKIIδC in RyR2R4496C+/− knock-in mice leads to altered intracellular Ca2+ handling and increased mortality. J Am Coll Cardiol 57:469–479

    Article  CAS  PubMed  Google Scholar 

  11. Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Ann Rev Physiol 65:45–79

    Article  CAS  Google Scholar 

  12. Gaudesius G, Miragoli M, Thomas SP, Rohr S (2003) Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Circ Res 93:421–428

    Article  CAS  PubMed  Google Scholar 

  13. Hempel P, Hoch B, Bartel S, Karczewski P (2002) Hypertrophic phenotype of cardiac calcium/calmodulin-dependent protein kinase II is reversed by angiotensin converting enzyme inhibition. Basic Res Cardiol 97:96–101

    Google Scholar 

  14. Hoch B, Meyer R, Hetzer R, Krause EG, Karczewski P (1999) Identification and expression of delta-isoforms of the multifunctional Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human myocardium. Circ Res 84:713–721

    Article  CAS  PubMed  Google Scholar 

  15. House S, Singer HA (2008) CaMKIIδ isoform regulation of neointima formation after vascular injury. Arterioscler Thromb Vasc Biol 28:441–447

    Article  CAS  PubMed  Google Scholar 

  16. LaFramboise WA, Scalise D, Stoodley P, Graner SR, Guthrie RD, Magovern JA et al (2007) Cardiac fibroblasts influence cardiomyocyte phenotype in vitro. Am J Physiol Cell Physiol 292:C1799–C1808

    Article  CAS  PubMed  Google Scholar 

  17. Lawan A, Al-Harthi S, Cadalbert L, McCluskey AG, Shweash M, Grassia G et al (2011) Deletion of the DUSP-4 gene reveals an essential non-redundant role for MAP kinase phosphatase-2 (MKP-2) in proliferation and cell survival. J Biol Chem 286:12933–12943

    Article  CAS  PubMed  Google Scholar 

  18. Ling H, Zhang T, Pereira L, Means CK, Cheng H, Gu Y et al (2009) Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. J Clin Invest 119:1230–1240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ma Y, Chen Y, Yang Y, Chen B, Liu D, Xiong Z et al (2013) Proteasome inhibition attenuates heart failure during the late stages of pressure overload through alterations in collagen expression. Biochem Pharmacol 85:223–233

    Article  CAS  PubMed  Google Scholar 

  20. Maier L, Bers DM (2002) Calcium, calmodulin and CaMKII: heartbeat to heartbeat and beyond. J Mol Cell Cardiol 34:919–939

    Article  CAS  PubMed  Google Scholar 

  21. Manabe I, Shindo T, Nagai (2002) Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circ Res 91:1103–1113

    Article  CAS  PubMed  Google Scholar 

  22. Martin TP, Robinson E, Harvey A, Grieve DJ, MacDonald M, Paul A, Currie S (2012) Characterisation and optimisation of a minimally invasive aortic banding procedure to induce cardiac hypertrophy. Exptl Physiol 97:822–832

    Article  CAS  Google Scholar 

  23. Monaco S, Illario M, Rusciano M, Gragnaniello G, Di Spigna G, Leggiero E et al (2009) Insulin stimulates fibroblast proliferation through calcium-calmodulin-dependent kinase II. Cell Cycle 8:2024–2030

    Article  CAS  PubMed  Google Scholar 

  24. Nguyen TP, Xie Y, Garfinkel A (2010) Fibroblast-myocyte coupling promotes cardiac arrhythmias. Hear Rhythm 7:S348

    Google Scholar 

  25. Rockman HA, Ross RS, Harris AN, Knowlton KU, Steinhelper ME, Field LJ et al (1991) Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc Natl Acad Sci USA 88:8277–8281

    Article  CAS  PubMed  Google Scholar 

  26. Sag CM, Wadsack DP, Khabbazzadeh S, Abesser D, Grefe C, Neumann K et al (2009) Calcium/calmodulin dependent protein kinase II contributes to cardiac arrhythmogenesis in heart failure. Circ Heart Fail 2:664–675

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Souders CA, Bowers SLK, Baudino TA (2009) Cardiac fibroblast: the renaissance cell. Circ Res 105:1164–1176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Sun Y, Weber KT (2000) Infarct scar: a dynamic tissue. Cardiovasc Res 46:250–256

    Article  CAS  PubMed  Google Scholar 

  29. Takeda N, Manabe I, Uchino Y, Eguchi K, Matsumoto S et al (2010) cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. J Clin Invest 120:254–265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. van Oort RJ, McCauley MD, Dixit SS, Pereira L, Yang Y, Respress JL et al (2010) Ryanodine receptor phosphorylation by CaMKII promotes life-threatening ventricular arrhythmias in mice with heart failure. Circulation 122:2669–2679

    Article  PubMed Central  PubMed  Google Scholar 

  31. Vasquez C, Mohandas P, Louie KL (2010) Enhanced fibroblast–myocyte interactions in response to cardiac injury. Circ Res 107:1011–1020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Vasquez C, Benamer N, Morley GE (2011) The cardiac fibroblast: functional and electrophysiological considerations in healthy and diseased hearts. J Cardiovasc Pharmacol 57:380–388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Visconti RP, Ebihara Y, Larue AC, Fleming PA, McQuinn TC, Mauya M et al (2006) An in vivo analysis of hematopoietic stem cell potential:hematopoietic origin of cardiac valve interstitial cells. Circ Res 98:690–696

    Article  CAS  PubMed  Google Scholar 

  34. Xie Y, Garfinkel A, Weiss JN (2009) Cardiac alternans induced by fibroblast-myocyte coupling: mechanistic insights from computational models. Am J Physiol 297:H775–H784

    Article  CAS  Google Scholar 

  35. Zhang P, Su J, Mende U (2012) Cross talk between cardiac myocytes and fibroblasts: from multiscale investigative approaches to mechanisms and functional consequences. Am J Physiol Heart Circ Physiol 303:H1385–H1396

    Article  CAS  PubMed  Google Scholar 

  36. Zhang R, Khoo MS, Wu Y, Yang Y, Grueter LE, Ni G et al (2005) Calmodulin kinase II inhibition protects against structural heart disease. Nat Med 11:409

    Article  CAS  PubMed  Google Scholar 

  37. Zhang T, Heller Brown J (2004) Role of calcium/calmodulin-dependent protein kinase II in cardiac hypertrophy and heart failure. Cardiovasc Res 63:476–486

    Article  CAS  PubMed  Google Scholar 

  38. Zhang T, Johnson EN, Gu Y, Morisette MR, Sah VP, Gigena MS et al (2002) The cardiac-specific nuclear δB isoform of Ca2+/calmodulin-dependent protein kinase II induces hypertrophy and dilated cardiomyopathy associated with increased protein phosphatase 2A activity. J Biol Chem 277:1261–1267

    Article  CAS  PubMed  Google Scholar 

  39. Zhang T, Maier LS, Dalton ND, Miyamoto S, Ross J, Bers DM (2003) The deltaC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ Res 92:912–919

    Article  CAS  PubMed  Google Scholar 

  40. Zhang W, Chen D, Feng Q, Wang J, Xiao W, Zhu W (2010) Inhibition of CaMKII suppresses cardiac fibroblast proliferation and extracellular matrix secretion. J Cardiovasc Pharmacol 55:96–105

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Y, Elsik M, Edgley AJ, Cox AJ, Kompa AR, Wang B et al (2012) A new anti-fibrotic drug attenuates cardiac remodelling and systolic dysfunction following experimental myocardial infarction. Int J Cardiol. doi:10.1016/j.ijcard.2012.11.067

    Google Scholar 

  42. Zhao Y, McLaughlin D, Robinson E, Harvey AP, Hookham MB, Shah AM et al (2010) Nox2 NADPH oxidase promotes pathologic cardiac remodelling associated with doxorubicin chemotherapy. Cancer Res 70:9287–9297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Margaret MacDonald for her expert technical assistance with mouse surgery and David Blatchford for his expertise in cell imaging. This work was supported by the British Heart Foundation (grant no: FS/06/066/21409).

Conflict of interest

The authors declare they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Currie.

Additional information

The experiments comply with the current laws of the country in which they were performed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, T.P., Lawan, A., Robinson, E. et al. Adult cardiac fibroblast proliferation is modulated by calcium/calmodulin-dependent protein kinase II in normal and hypertrophied hearts. Pflugers Arch - Eur J Physiol 466, 319–330 (2014). https://doi.org/10.1007/s00424-013-1326-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1326-9

Keywords

Navigation