Skip to main content
Log in

Post-ischemic early acidosis in cardiac postconditioning modifies the activity of antioxidant enzymes, reduces nitration, and favors protein S-nitrosylation

  • Cardiovascular Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

An Erratum to this article was published on 11 October 2014

Abstract

Postconditioning (PostC) modifies the early post-ischemic pH, redox environment, and activity of enzymes. We hypothesized that early acidosis in PostC may affect superoxide dismutase (SOD) and catalase (CAT) activities, may reduce 3-nitrotyrosine (3-NT) protein levels, and may increase S-nitrosylated (SNO) protein levels, thus deploying its protective effects. To verify this hypothesis, we studied the early (7th min) and late (120th min) phases of reperfusion (a) endogenous SOD and CAT activities and (b) 3-NT protein levels and SNO protein levels. Isolated rat hearts underwent 30-min ischemia/120-min reperfusion (I/R) or PostC (5 cycles of 10-s I/R at the beginning of 120-min reperfusion) either with or without exogenous CAT or SOD infused during the initial 3 min of reperfusion. The effects of early reperfusion with acid buffer (AB, pH 6.8) on endogenous antioxidant enzymes were also tested. Pressure, infarct size, and lactate dehydrogenase release were also measured. At the 7th min, PostC induced a significant decrease in SOD activity with no major change both in Mn and Cu/Zn SOD levels and in CAT activity and level. PostC also reduced 3-NT and increased SNO levels. Exogenous SOD, but not CAT, abolished PostC cardioprotection. In late reperfusion (120-min), I/R increased SOD activity but decreased CAT activity and Cu/Zn SOD levels; these effects were reversed by PostC; 3-NT was not affected, but SNO was increased by PostC. AB reproduced PostC effects on antioxidant enzymes. The conclusions are as follows: PostC downregulates endogenous SOD and preserves CAT activity, thus increasing SNO and reducing 3-NT levels. These effects are triggered by early post-ischemic acidosis. Yet acidosis-induced SOD downregulation may limit denitrosylation, thus contributing to PostC triggering. Hence, exogenous SOD, but not CAT, interferes with PostC triggering. Prolonged SOD downregulation and SNO increase may contribute to PostC and AB beneficial effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Altug S, Demiryürek AT, Cakici I, Kanzik I (1999) The beneficial effects of peroxynitrite on ischaemia–reperfusion arrhythmias in rat isolated hearts. Eur J Pharmacol 384:157–162

    Article  PubMed  CAS  Google Scholar 

  2. Baines CP, Goto M, Downey JM (1997) Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. J Mol Cell Cardiol 29:207–216

    Article  PubMed  CAS  Google Scholar 

  3. Boengler K, Dodoni G, Rodriguez-Sinovas A, Cabestrero A, Ruiz-Meana M, Gres P, Konietzka I, Lopez-Iglesias C, Garcia-Dorado D, Di Lisa F, Heusch G, Schulz R (2005) Connexin-43 in cardiomyocyte mitochondria and its increase by ischemic preconditioning. Cardiovasc Res 67:234–244

    Article  PubMed  CAS  Google Scholar 

  4. Bopassa JC, Ferrera R, Gateau-Roesch O, Couture-Lepetit E, Ovize M (2006) PI3-kinase regulates the mitochondrial transition pore in controlled reperfusion and postconditioning. Cardiovasc Res 69:178–185

    Article  PubMed  CAS  Google Scholar 

  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 7:248–254

    Article  Google Scholar 

  6. Burwell LS, Nadtochiy SM, Tompkins AJ, Young S, Brookes PS (2006) Direct evidence for S-nitrosation of mitochondrial complex I. Biochem J 394:627–634

    Article  PubMed  CAS  Google Scholar 

  7. Carroll R, Gant VA, Yellon DM (2001) Mitochondrial KATP channel opening protects a human atrial-derived cell line by a mechanism involving free radical generation. Cardiovasc Res 51:691–700

    Article  PubMed  CAS  Google Scholar 

  8. Cohen MV, Yang XM, Downey JM (2007) The pH hypothesis of postconditioning: staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis. Circulation 115:1895–1903

    Article  PubMed  Google Scholar 

  9. Cohen MV, Yang XM, Downey JM (2008) Acidosis, oxygen, and interference with mitochondrial permeability transition pore formation in the early minutes of reperfusion are critical to postconditioning’s success. Basic Res Cardiol 103:464–471

    Article  PubMed  Google Scholar 

  10. Cohen MV, Yang XM, Liu GS, Heusch G, Downey JM (2001) Acetylcholine, bradykinin, opioids, and phenylephrine, but not adenosine, trigger preconditioning by generating free radicals and opening mitochondrial KATP channels. Circ Res 89:273–278

    Article  PubMed  CAS  Google Scholar 

  11. Daiber A, Schildknecht S, Müller J, Kamuf J, Bachschmid MM, Ullrich V (2009) Chemical model systems for cellular nitros(yl)ation reactions. Free Radic Biol Med 47:458–467

    Article  PubMed  CAS  Google Scholar 

  12. Danielisová V, Gottlieb M, Némethová M, Burda J (2008) Effects of bradykinin postconditioning on endogenous antioxidant enzyme activity after transient forebrain ischemia in rat. Neurochem Res 33:1057–1064

    Article  PubMed  Google Scholar 

  13. Downey JM, Cohen MV (2006) A really radical observation—a comment on Penna et al. in Basic Res Cardiol. Basic Res Cardiol 101:180–189

    Article  Google Scholar 

  14. Ekanayake PM, Kang H-S, De Zyosa M, Jee Y, Lee Y-H, Lee J (2006) Molecular cloning and characterization of Mn-superoxide dismutase from disk abalone (Haliotis discus discus). Comp Biochem Physiol 145:318–324

    Article  Google Scholar 

  15. Ferdinandy P, Schulz R (2003) Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia–reperfusion injury and preconditioning. Br J Pharmacol 138:532–543

    Article  PubMed  CAS  Google Scholar 

  16. Forbes RA, Steenbergen C, Murphy E (2001) Diazoxide induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ Res 88:802–809

    Article  PubMed  CAS  Google Scholar 

  17. Fujita M, Asanuma H, Hirata A, Wakeno M, Takahama H, Sasaki H, Kim J, Takashima S, Tsukamoto O, Minamino T, Shinozaki Y, Tomoike H, Hori M, Kitakaze M (2007) Prolonged transient acidosis during early reperfusion contributes to the cardioprotective effects of postconditioning. Am J Physiol Heart Circ Physiol 292:H2004–H2008

    Article  PubMed  CAS  Google Scholar 

  18. Gonzales DR, Fernandez IC, Ordenes PP, Treuer AV, Eller G, Boric MP (2008) Differential role of S-nitrosylation and the NO-cGMP-PKG pathway in cardiac contractility. Nitric Oxide 18:157–167

    Google Scholar 

  19. Gonzales DR, Treuer AV, Castellanos J, Dulce RA, Hare JM (2010) Impaired S-nitrosylation of the ryanodine receptor caused by xanthine oxidase activity contributes to calcium leak in heart failure. J Biol Chem 285:28938–28945

    Article  Google Scholar 

  20. Granfeldt A, Lefer DJ, Vinten-Johansen J (2009) Protective ischemia in patients: preconditioning and postconditioning. Cardiovasc Res 83:234–246

    Article  PubMed  CAS  Google Scholar 

  21. Grisham MB (1999) Effect of superoxide dismutase on the stability of S-nitrosothiols. Arch Biochem Biophys 361:323–330

    Article  PubMed  Google Scholar 

  22. Hausenloy DJ, Wynne AM, Yellon DM (2007) Ischemic preconditioning targets the reperfusion phase. Basic Res Cardiol 102:445–452

    Article  PubMed  CAS  Google Scholar 

  23. Heinzel FR, Luo Y, Li X, Boengler K, Buechert A, García-Dorado D, Di Lisa F, Schulz R, Heusch G (2005) Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin-43-deficient mice. Circ Res 97:583–586

    Article  PubMed  CAS  Google Scholar 

  24. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166

    Article  PubMed  CAS  Google Scholar 

  25. Heusch G (2009) No risk, no…cardioprotection? A critical perspective. Cardiovasc Res 84:173–175

    Article  PubMed  CAS  Google Scholar 

  26. Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118:1915–1919

    Article  PubMed  Google Scholar 

  27. Heusch G, Boengler K, Schulz R (2010) Inhibition of mitochondrial permeability transition pore opening: the Holy Grail of cardioprotection. Basic Res Cardiol 105:151–154

    Article  PubMed  Google Scholar 

  28. Iliodromitis EK, Andreadou I, Prokovas E, Zoga A, Farmakis D, Fotopoulou T, Ioannidis K, Paraskevaidis IA, Kremastinos DT (2010) Simvastatin in contrast to postconditioning reduces infarct size in hyperlipidemic rabbits: possible role of oxidative/nitrosative stress attenuation. Basic Res Cardiol 105:193–203

    Article  PubMed  CAS  Google Scholar 

  29. Inserte J, Barba I, Hernando V, Abellán A, Ruiz-Meana M, Rodríguez-Sinovas A, Garcia-Dorado D (2008) Effect of acidic reperfusion on prolongation of intracellular acidosis and myocardial salvage. Cardiovasc Res 77:782–790

    Article  PubMed  CAS  Google Scholar 

  30. Inserte J, Ruiz-Meana M, Rodríguez-Sinovas A, Barba I, Garcia-Dorado D (2011) Contribution of delayed intracellular pH recovery to ischemic postconditioning protection. Antioxid Redox Signal 14:923–939

    Article  PubMed  CAS  Google Scholar 

  31. Jaffrey SR, Snyder SH (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 86:PL1

    Google Scholar 

  32. Kupai K, Csonka C, Fekete V, Odendaal L, van Rooyen J, de Marais W, Csont T, Ferdinandy P (2009) Cholesterol diet-induced hyperlipidemia impairs the cardioprotective effect of postconditioning: role of peroxynitrite. Am J Physiol Heart Circ Physiol 297:H1729–H1735

    Article  PubMed  CAS  Google Scholar 

  33. Lacerda L, Somers S, Opie LH, Lecour S (2009) Ischaemic postconditioning protects against reperfusion injury via the SAFE pathway. Cardiovasc Res 84:201–208

    Article  PubMed  CAS  Google Scholar 

  34. Lim SY, Davidson SM, Hausenloy DJ, Yellon DM (2007) Preconditioning and postconditioning: the essential role of the mitochondrial permeability transition pore. Cardiovasc Res 75:530–535

    Article  PubMed  CAS  Google Scholar 

  35. Liochev SI, Fridovich I (2007) The effects of superoxide dismutase on H2O2 formation. Free Radic Biol Med 42:1465–1469

    Article  PubMed  CAS  Google Scholar 

  36. Liu B, Tewari AK, Zhang L, Green-Church KB, Zweier JL, Chen YR, He G (2009) Proteomic analysis of protein tyrosine nitration after ischemia reperfusion injury: mitochondria as the major target. Biochim Biophys Acta 1794:476–485

    PubMed  CAS  Google Scholar 

  37. Liu XH, Kato H, Nakata N, Kogure K, Kato K (1993) An immunohistochemical study of copper/zinc superoxide dismutase and manganese superoxide dismutase in rat hippocampus after transient cerebral ischemia. Brain Res 625:29–37

    Article  PubMed  CAS  Google Scholar 

  38. Liu Y, Yang XM, Iliodromitis EK, Kremastinos DT, Dost T, Cohen MV, Downey JM (2008) Redox signaling at reperfusion is required for protection from ischemic preconditioning but not from a direct PKC activator. Basic Res Cardiol 103:54–59

    Article  PubMed  CAS  Google Scholar 

  39. Manintveld OC, Te Lintel Hekkert M, van den Bos EJ, Suurenbroek GM, Dekkers DH, Verdouw PD, Lamers JM, Duncker DJ (2007) Cardiac effects of postconditioning depend critically on the duration of index ischemia. Am J Physiol Heart Circ Physiol 292:H1551–H1560

    Article  PubMed  CAS  Google Scholar 

  40. Martìnez-Ruiza A, Lamas S (2004) S-nitrosylation: a potential new paradigm in signal transduction. Cardiovasc Res 62:43–52

    Article  Google Scholar 

  41. Naslund U, Haggmark S, Johansson G, Pennert K, Reiz S, Marklund SL (1992) Effects of reperfusion and superoxide dismutase on myocardial infarct size in a closed chest pig model. Cardiovasc Res 26:170–178

    Article  PubMed  CAS  Google Scholar 

  42. Okado-Matsumoto A, Fridovich I (2007) Putative denitrosylase activity of Cu, Zn-superoxide dismutase. Free Radic Biol Med 43:830–836

    Article  PubMed  CAS  Google Scholar 

  43. Oldenburg O, Cohen MV, Yellon DM, Downey JM (2002) Mitochondrial KATP channels: role in cardioprotection. Cardiovasc Res 55:429–437

    Article  PubMed  CAS  Google Scholar 

  44. Oldenburg O, Qin Q, Sharma AR, Cohen MV, Downey JM, Benoit JN (2002) Acetylcholine leads to free radical production dependent on KATP channels, Gi proteins, phosphatidylinositol 3-kinase and tyrosine kinase. Cardiovasc Res 55:544–552

    Article  PubMed  CAS  Google Scholar 

  45. Pagliaro P, Mancardi D, Rastaldo R, Penna C, Gattullo D, Miranda KM, Feelisch M, Wink DA, Kass DA, Paolocci N (2003) Nitroxyl affords thiol-sensitive myocardial protective effects akin to early preconditioning. Free Radic Biol Med 34:33–43

    Article  PubMed  CAS  Google Scholar 

  46. Pagliaro P, Moro F, Tullio F, Perrelli MG, Penna C (2011) Cardioprotective pathways during reperfusion: focus on redox signaling and other modalities of cell signaling. Antioxid Redox Signal 14:833–850

    Article  PubMed  CAS  Google Scholar 

  47. Pagliaro P, Rastaldo R, Losano G, Gattullo D (2001) Mitochondrial ATP-sensitive channel opener does not induce vascular preconditioning, but potentiates the effect of a preconditioning ischemia on coronary reactive hyperemia in the anesthetized goat. Pflügers Arch Eur J Physiol 443:166–174

    Article  CAS  Google Scholar 

  48. Pain T, Yang XM, Critz SD, Yue Y, Nakano A, Liu GS, Heusch G, Cohen MV, Downey JM (2000) Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals. Circ Res 87:460–466

    PubMed  CAS  Google Scholar 

  49. Penna C, Cappello S, Mancardi D, Raimondo S, Rastaldo R, Gattullo D, Losano G, Pagliaro P (2006) Post-conditioning reduces infarct size in the isolated rat heart: role of coronary flow and pressure and the nitric oxide/cGMP pathway. Basic Res Cardiol 101:168–179

    Article  PubMed  CAS  Google Scholar 

  50. Penna C, Mancardi D, Raimondo S, Geuna S, Pagliaro P (2008) The paradigm of postconditioning to protect the heart. J Cell Mol Med 12:435–458

    Article  PubMed  CAS  Google Scholar 

  51. Penna C, Mancardi D, Rastaldo R, Losano G, Pagliaro P (2007) Intermittent activation of bradykinin B2 receptors and mitochondrial KATP channels trigger cardiac postconditioning through redox signaling. Cardiovasc Res 75:168–177

    Article  PubMed  CAS  Google Scholar 

  52. Penna C, Mancardi D, Rastaldo R, Pagliaro P (2009) Cardioprotection: a radical view. Free radicals in pre and postconditioning. Biochim Biophys Acta 1787:781–793

    Article  PubMed  CAS  Google Scholar 

  53. Penna C, Perrelli MG, Raimondo S, Tullio F, Merlino A, Moro F, Geuna S, Mancardi D, Pagliaro P (2009) Postconditioning induces an anti-apoptotic effect and preserves mitochondrial integrity in isolated rat hearts. Biochim Biophys Acta 1787:794–801

    Article  PubMed  CAS  Google Scholar 

  54. Penna C, Rastaldo R, Mancardi D, Raimondo S, Cappello S, Gattullo D, Losano G, Pagliaro P (2006) Post-conditioning induced cardioprotection requires signaling through a redox-sensitive mechanism, mitochondrial ATP-sensitive K+ channel and protein kinase C activation. Basic Res Cardiol 101:180–189

    Article  PubMed  CAS  Google Scholar 

  55. Rodríguez-Sinovas A, Cabestrero A, García del Blanco B, Inserte J, García A, García-Dorado D (2009) Intracoronary acid infusion as an alternative to ischemic postconditioning in pigs. Basic Res Cardiol 104:761–771

    Article  PubMed  Google Scholar 

  56. Sun J, Murphy E (2010) Protein S-nitrosylation and cardioprotection. Circ Res 106:285–296

    Article  PubMed  CAS  Google Scholar 

  57. Sun J, Picht E, Ginsburg KS, Bers DM, Steenbergen C, Murphy E (2006) Hypercontractile female hearts exhibit increased S-nitrosylation of the L-type Ca2+ channel alpha1 subunit and reduced ischemia/reperfusion injury. Circ Res 98:403–411

    Article  PubMed  CAS  Google Scholar 

  58. Switala J, Loewen PC (2002) Diversity of properties among catalases. Arch Biochem Biophys 401:145–154

    Article  PubMed  CAS  Google Scholar 

  59. Switzer CH, Flores-Santana W, Mancardi D, Donzelli S, Basudhar D, Ridnour LA et al (2009) The emergence of nitroxyl (HNO) as a pharmacological agent. Biochim Biophys Acta 1787:835–840

    Article  PubMed  CAS  Google Scholar 

  60. Thomas DD, Ridnour LA, Isenberg JS, Flores-Santana W, Switzer CH, Donzelli S, Hussain P, Vecoli C, Paolocci N, Ambs S, Colton CA, Harris CC, Roberts DD, Wink DA (2008) The chemical biology of nitric oxide: implications in cellular signaling. Free Radic Biol Med 45:18–31

    Article  PubMed  CAS  Google Scholar 

  61. Tritto I, Ambrosio G (2001) Role of oxidants in the signaling pathway of preconditioning. Antioxid Redox Signal 3:3–10

    Article  PubMed  CAS  Google Scholar 

  62. Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM (2004) Postconditioning: a form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res 95:230–232

    Article  PubMed  CAS  Google Scholar 

  63. Tsutsumi YM, Yokoyama T, Horikawa Y, Roth DM, Patel HH (2007) Reactive oxygen species trigger ischemic and pharmacological postconditioning: in vivo and in vitro characterization. Life Sci 81:1223–1227

    Article  PubMed  CAS  Google Scholar 

  64. Ursini F, Maiorino M, Brigelius-Flohe R, Aumann KD, Roveri A, Schomburg D, Flohé L (1995) Diversity of glutathione peroxidases. Methods Enzymol 252:38–53

    Article  PubMed  CAS  Google Scholar 

  65. Wang HC, Zhang HF, Guo WY, Su H, Zhang KR, Li QX, Yan W, Ma XL, Lopez BL, Christopher TA, Gao F (2006) Hypoxic postconditioning enhances the survival and inhibits apoptosis of cardiomyocytes following reoxygenation: role of peroxynitrite formation. Apoptosis 11:1453–1460

    Article  PubMed  CAS  Google Scholar 

  66. Wink DA, Miranda KM, Katori T, Mancardi D, Thomas DD, Ridnour L, Espey MG, Feelisch M, Colton CA, Fukuto JM, Pagliaro P, Kass DA, Paolocci N (2003) Orthogonal properties of the redox siblings nitroxyl and nitric oxide in the cardiovascular system: a novel redox paradigm. Am J Physiol Heart Circ Physiol 285:H2264–H2276

    PubMed  CAS  Google Scholar 

  67. Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285:H579–H588

    PubMed  CAS  Google Scholar 

  68. Zhou Z, Kang YJ (2000) Cellular and subcellular localization of catalase in the heart of transgenic mice. J Histochem Cytochem 48:585–594

    Article  PubMed  CAS  Google Scholar 

  69. Zweier JL, Talukder MA (2006) The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res 70:181–190

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by: National Institutes of Cardiovascular Research (INRC; FM, PP), Regione Piemonte, PRIN, ex-60%, and Compagnia di San Paolo. We thank Prof. Donatella Gattullo for her invaluable support and Jennifer Lee for language revision. We also thank Prof. Marco Galloni for providing antibodies against vWF. The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Pagliaro.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00424-014-1624-x.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penna, C., Perrelli, MG., Tullio, F. et al. Post-ischemic early acidosis in cardiac postconditioning modifies the activity of antioxidant enzymes, reduces nitration, and favors protein S-nitrosylation. Pflugers Arch - Eur J Physiol 462, 219–233 (2011). https://doi.org/10.1007/s00424-011-0970-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-0970-1

Keywords

Navigation