Skip to main content
Log in

Angiotensin receptors as determinants of life span

  • Integrative Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Angiotensin II (Ang II), the central product of renin-angiotensin system, has a role in the etiology of hypertension and in pathophysiology of cardiac and renal diseases in humans. Other functions of Ang II include effects on immune response, inflammation, cell growth and proliferation, which are largely mediated by Ang II type 1 receptor (AT1). Several experimental studies have demonstrated that Ang II acts through AT1 as a mediator of normal aging processes by increasing oxidant damage to mitochondria and in consequences by affecting mitochondrial function. Recently, our group has demonstrated that the inhibition of Ang II activity by targeted disruption of the Agtr1a gene encoding Ang II type 1A receptor (AT1A) in mice translates into marked prolongation of life span. The absence of AT1A protected multiple organs from oxidative damage and the alleviation of aging-like phenotype was associated with increased number of mitochondria and upregulation of the prosurvival gene sirtuin 3. AT1 receptor antagonists have been proven safe and well-tolerated for chronic use and are used as a key component of the modern therapy for hypertension and cardiac failure, therefore Ang II/AT1 pathway represents a feasible therapeutic strategy to prolong life span in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

RAS:

renin-angiotensin system

Ang II:

angiotensin II

ACE:

angiotensin converting enzyme

AT1 :

Ang II type 1 receptor

AT2 :

Ang II type 2 receptor

NO:

nitric oxide

eNOS:

endothelial nitric oxide synthase

ROS:

reactive oxygen species

ACEi:

angiotensin-converting enzyme inhibitors

ARBs:

angiotensin II receptor blockers

SIRT:

sirtuin

Nampt:

nicotinamide phosphoribosyltransferase

IGF-1:

insulin growth factor-1

References

  1. Aguilera G (1992) Role of angiotensin II receptor subtypes on the regulation of aldosterone secretion in the adrenal glomerulosa zone in the rat. Mol Cell Endocrinol 90:53–60

    Article  CAS  PubMed  Google Scholar 

  2. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342

    Article  CAS  PubMed  Google Scholar 

  3. Baylis C, Engels K, Hymel A, Navar LG (1997) Plasma renin activity and metabolic clearance rate of angiotensin II in the unstressed aging rat. Mech Ageing Dev 97:163–172

    Article  CAS  PubMed  Google Scholar 

  4. Bellizzi D, Rose G, Cavalcante P, Covello G, Dato S, De Rango F, Greco V, Maggiolini M, Feraco E, Mari V, Franceschi C, Passarino G, De Benedictis G (2005) A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics 85:258–263

    Article  CAS  PubMed  Google Scholar 

  5. Benigni A, Corna D, Zoja C, Sonzogni A, Latini R, Salio M, Conti S, Rottoli D, Longaretti L, Cassis P, Morigi M, Coffman TM, Remuzzi G (2009) Disruption of the Ang II type 1 receptor promotes longevity in mice. J Clin Invest 119:524–530

    Article  CAS  PubMed  Google Scholar 

  6. Benndorf RA, Krebs C, Hirsch-Hoffmann B, Schwedhelm E, Cieslar G, Schmidt-Haupt R, Steinmetz OM, Meyer-Schwesinger C, Thaiss F, Haddad M, Fehr S, Heilmann A, Helmchen U, Hein L, Ehmke H, Stahl RA, Boger RH, Wenzel UO (2009) Angiotensin II type 2 receptor deficiency aggravates renal injury and reduces survival in chronic kidney disease in mice. Kidney Int 75:1039–1049

    Article  CAS  PubMed  Google Scholar 

  7. Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716

    CAS  PubMed  Google Scholar 

  8. Brewster UC, Perazella MA (2004) The renin-angiotensin-aldosterone system and the kidney: effects on kidney disease. Am J Med 116:263–272

    Article  CAS  PubMed  Google Scholar 

  9. Brown-Borg HM, Borg KE, Meliska CJ, Bartke A (1996) Dwarf mice and the ageing process. Nature 384:33

    Article  CAS  PubMed  Google Scholar 

  10. Burns EM, Kruckeberg TW, Comerford LE, Buschmann MT (1979) Thinning of capillary walls and declining numbers of endothelial mitochondria in the cerebral cortex of the aging primate, Macaca nemestrina. J Gerontol 34:642–650

    CAS  PubMed  Google Scholar 

  11. Burson JM, Aguilera G, Gross KW, Sigmund CD (1994) Differential expression of angiotensin receptor 1A and 1B in mouse. Am J Physiol 267:E260–E267

    CAS  PubMed  Google Scholar 

  12. Christensen K, Johnson TE, Vaupel JW (2006) The quest for genetic determinants of human longevity: challenges and insights. Nat Rev Genet 7:436–448

    Article  CAS  PubMed  Google Scholar 

  13. Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305:390–392

    Article  CAS  PubMed  Google Scholar 

  14. Cohn JN, Goldman JM (2008) Establishing a new option for target-organ protection: rationale for ARB plus ACE inhibitor combination therapy. Am J Hypertens 21:248–256

    Article  CAS  PubMed  Google Scholar 

  15. Costa LE, La-Padula P, Lores-Arnaiz S, D’Amico G, Boveris A, Kurnjek ML, Basso N (2002) Long-term angiotensin II inhibition increases mitochondrial nitric oxide synthase and not antioxidant enzyme activities in rat heart. J Hypertens 20:2487–2494

    Article  CAS  PubMed  Google Scholar 

  16. Dali-Youcef N, Lagouge M, Froelich S, Koehl C, Schoonjans K, Auwerx J (2007) Sirtuins: the ‘magnificent seven’, function, metabolism and longevity. Ann Med 39:335–345

    Article  CAS  PubMed  Google Scholar 

  17. Davisson RL, Oliverio MI, Coffman TM, Sigmund CD (2000) Divergent functions of angiotensin II receptor isoforms in the brain. J Clin Invest 106:103–106

    Article  CAS  PubMed  Google Scholar 

  18. de Cavanagh EM, Flores I, Ferder M, Inserra F, Ferder L (2008) Renin-angiotensin system inhibitors protect against age-related changes in rat liver mitochondrial DNA content and gene expression. Exp Gerontol 43:919–928

    Article  PubMed  CAS  Google Scholar 

  19. de Cavanagh EM, Piotrkowski B, Basso N, Stella I, Inserra F, Ferder L, Fraga CG (2003) Enalapril and losartan attenuate mitochondrial dysfunction in aged rats. FASEB J 17:1096–1098

    PubMed  Google Scholar 

  20. de Cavanagh EM, Piotrkowski B, Fraga CG (2004) Concerted action of the renin-angiotensin system, mitochondria, and antioxidant defenses in aging. Mol Aspects Med 25:27–36

    Article  PubMed  CAS  Google Scholar 

  21. Droge W, Schipper HM (2007) Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell 6:361–370

    Article  CAS  PubMed  Google Scholar 

  22. Erdmann B, Fuxe K, Ganten D (1996) Subcellular localization of angiotensin II immunoreactivity in the rat cerebellar cortex. Hypertension 28:818–824

    CAS  PubMed  Google Scholar 

  23. Esposito LA, Melov S, Panov A, Cottrell BA, Wallace DC (1999) Mitochondrial disease in mouse results in increased oxidative stress. Proc Natl Acad Sci U S A 96:4820–4825

    Article  CAS  PubMed  Google Scholar 

  24. Ferder LF, Inserra F, Basso N (2002) Advances in our understanding of aging: role of the renin-angiotensin system. Curr Opin Pharmacol 2:189–194

    Article  CAS  PubMed  Google Scholar 

  25. Gilliam-Davis S, Payne VS, Kasper SO, Tommasi EN, Robbins ME, Diz DI (2007) Long-term AT1 receptor blockade improves metabolic function and provides renoprotection in Fischer-344 rats. Am J Physiol Heart Circ Physiol 293:H1327–H1333

    Article  CAS  PubMed  Google Scholar 

  26. Gonzalez Bosc LV, Kurnjek ML, Muller A, Terragno NA, Basso N (2001) Effect of chronic angiotensin II inhibition on the nitric oxide synthase in the normal rat during aging. J Hypertens 19:1403–1409

    Article  CAS  PubMed  Google Scholar 

  27. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141–1148

    CAS  PubMed  Google Scholar 

  28. Groban L, Pailes NA, Bennett CD, Carter CS, Chappell MC, Kitzman DW, Sonntag WE (2006) Growth hormone replacement attenuates diastolic dysfunction and cardiac angiotensin II expression in senescent rats. J Gerontol A Biol Sci Med Sci 61:28–35

    PubMed  Google Scholar 

  29. Guarente L (2006) Sirtuins as potential targets for metabolic syndrome. Nature 444:868–874

    Article  CAS  PubMed  Google Scholar 

  30. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    CAS  PubMed  Google Scholar 

  31. Herbener GH (1976) A morphometric study of age-dependent changes in mitochondrial population of mouse liver and heart. J Gerontol 31:8–12

    CAS  PubMed  Google Scholar 

  32. Herbert KE, Mistry Y, Hastings R, Poolman T, Niklason L, Williams B (2008) Angiotensin II-mediated oxidative DNA damage accelerates cellular senescence in cultured human vascular smooth muscle cells via telomere-dependent and -independent pathways. Circ Res 102:201–208

    Article  CAS  PubMed  Google Scholar 

  33. Heudes D, Michel O, Chevalier J, Scalbert E, Ezan E, Bariety J, Zimmerman A, Corman B (1994) Effect of chronic ANG I-converting enzyme inhibition on aging processes. I. Kidney structure and function. Am J Physiol 266:R1038–R1051

    CAS  PubMed  Google Scholar 

  34. Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Even PC, Cervera P, Le Bouc Y (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421:182–187

    Article  CAS  PubMed  Google Scholar 

  35. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196

    Article  CAS  PubMed  Google Scholar 

  36. Ito M, Oliverio MI, Mannon PJ, Best CF, Maeda N, Smithies O, Coffman TM (1995) Regulation of blood pressure by the type 1A angiotensin II receptor gene. Proc Natl Acad Sci U S A 92:3521–3525

    Article  CAS  PubMed  Google Scholar 

  37. Ito N, Ohishi M, Yamamoto K, Tatara Y, Shiota A, Hayashi N, Komai N, Yanagitani Y, Rakugi H, Ogihara T (2007) Renin-angiotensin inhibition reverses advanced cardiac remodeling in aging spontaneously hypertensive rats. Am J Hypertens 20:792–799

    Article  CAS  PubMed  Google Scholar 

  38. Jacobs KM, Pennington JD, Bisht KS, Aykin-Burns N, Kim HS, Mishra M, Sun L, Nguyen P, Ahn BH, Leclerc J, Deng CX, Spitz DR, Gius D (2008) SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression. Int J Biol Sci 4:291–299

    CAS  PubMed  Google Scholar 

  39. Krishnan KJ, Greaves LC, Reeve AK, Turnbull DM (2007) Mitochondrial DNA mutations and aging. Ann N Y Acad Sci 1100:227–240

    Article  CAS  PubMed  Google Scholar 

  40. Law IK, Liu L, Xu A, Lam KS, Vanhoutte PM, Che CM, Leung PT, Wang Y (2009) Identification and characterization of proteins interacting with SIRT1 and SIRT3: implications in the anti-aging and metabolic effects of sirtuins. Proteomics 9:2444–2456

    Article  CAS  PubMed  Google Scholar 

  41. Lombard DB, Alt FW, Cheng HL, Bunkenborg J, Streeper RS, Mostoslavsky R, Kim J, Yancopoulos G, Valenzuela D, Murphy A, Yang Y, Chen Y, Hirschey MD, Bronson RT, Haigis M, Guarente LP, Farese RV Jr, Weissman S, Verdin E, Schwer B (2007) Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol 27:8807–8814

    Article  CAS  PubMed  Google Scholar 

  42. Masilamani S, Kim GH, Mitchell C, Wade JB, Knepper MA (1999) Aldosterone-mediated regulation of ENaC alpha, beta, and gamma subunit proteins in rat kidney. J Clin Invest 104:R19–R23

    Article  CAS  PubMed  Google Scholar 

  43. Min LJ, Mogi M, Iwai M, Horiuchi M (2009) Signaling mechanisms of angiotensin II in regulating vascular senescence. Ageing Res Rev 8:113–121

    Article  CAS  PubMed  Google Scholar 

  44. Miyazaki R, Ichiki T, Hashimoto T, Inanaga K, Imayama I, Sadoshima J, Sunagawa K (2008) SIRT1, a longevity gene, downregulates angiotensin II type 1 receptor expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 28:1263–1269

    Article  CAS  PubMed  Google Scholar 

  45. Modrick ML, Didion SP, Sigmund CD, Faraci FM (2009) Role of oxidative stress and AT1 receptors in cerebral vascular dysfunction with aging. Am J Physiol Heart Circ Physiol 296:H1914–H1919

    Article  CAS  PubMed  Google Scholar 

  46. Mollnau H, Wendt M, Szocs K, Lassegue B, Schulz E, Oelze M, Li H, Bodenschatz M, August M, Kleschyov AL, Tsilimingas N, Walter U, Forstermann U, Meinertz T, Griendling K, Munzel T (2002) Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ Res 90:E58–E65

    Article  PubMed  Google Scholar 

  47. Morris BJ (2005) A forkhead in the road to longevity: the molecular basis of lifespan becomes clearer. J Hypertens 23:1285–1309

    Article  CAS  PubMed  Google Scholar 

  48. Oliverio MI, Coffman TM (2000) Angiotensin II receptor physiology using gene targeting. News Physiol Sci 15:171–175

    CAS  PubMed  Google Scholar 

  49. Oliverio MI, Kim HS, Ito M, Le T, Audoly L, Best CF, Hiller S, Kluckman K, Maeda N, Smithies O, Coffman TM (1998) Reduced growth, abnormal kidney structure, and type 2 (AT2) angiotensin receptor-mediated blood pressure regulation in mice lacking both AT1A and AT1B receptors for angiotensin II. Proc Natl Acad Sci U S A 95:15496–15501

    Article  CAS  PubMed  Google Scholar 

  50. Peters J, Kranzlin B, Schaeffer S, Zimmer J, Resch S, Bachmann S, Gretz N, Hackenthal E (1996) Presence of renin within intramitochondrial dense bodies of the rat adrenal cortex. Am J Physiol 271:E439–E450

    CAS  PubMed  Google Scholar 

  51. Pueyo ME, Arnal JF, Rami J, Michel JB (1998) Angiotensin II stimulates the production of NO and peroxynitrite in endothelial cells. Am J Physiol 274:C214–C220

    CAS  PubMed  Google Scholar 

  52. Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288:481–487

    Article  CAS  PubMed  Google Scholar 

  53. Remuzzi G, Benigni A, Remuzzi A (2006) Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J Clin Invest 116:288–296

    Article  CAS  PubMed  Google Scholar 

  54. Remuzzi G, Perico N, Macia M, Ruggenenti P (2005) The role of renin-angiotensin-aldosterone system in the progression of chronic kidney disease. Kidney Int Suppl 99:S57–S65

    Article  CAS  PubMed  Google Scholar 

  55. Rueckschloss U, Quinn MT, Holtz J, Morawietz H (2002) Dose-dependent regulation of NAD(P)H oxidase expression by angiotensin II in human endothelial cells: protective effect of angiotensin II type 1 receptor blockade in patients with coronary artery disease. Arterioscler Thromb Vasc Biol 22:1845–1851

    Article  CAS  PubMed  Google Scholar 

  56. Ruggenenti P, Fassi A, Ilieva AP, Bruno S, Iliev IP, Brusegan V, Rubis N, Gherardi G, Arnoldi F, Ganeva M, Ene-Iordache B, Gaspari F, Perna A, Bossi A, Trevisan R, Dodesini AR, Remuzzi G (2004) Preventing microalbuminuria in type 2 diabetes. N Engl J Med 351:1941–1951

    Article  CAS  PubMed  Google Scholar 

  57. Ruggenenti P, Perna A, Gherardi G, Garini G, Zoccali C, Salvadori M, Scolari F, Schena FP, Remuzzi G (1999) Renoprotective properties of ACE-inhibition in non-diabetic nephropathies with non-nephrotic proteinuria. Lancet 354:359–364

    Article  CAS  PubMed  Google Scholar 

  58. Ruster C, Wolf G (2006) Renin-angiotensin-aldosterone system and progression of renal disease. J Am Soc Nephrol 17:2985–2991

    Article  PubMed  CAS  Google Scholar 

  59. Sasaki K, Yamano Y, Bardhan S, Iwai N, Murray JJ, Hasegawa M, Matsuda Y, Inagami T (1991) Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor. Nature 351:230–233

    Article  CAS  PubMed  Google Scholar 

  60. Schulman IH, Raij L (2008) The angiotensin II type 2 receptor: what is its clinical significance? Curr Hypertens Rep 10:188–193

    Article  CAS  PubMed  Google Scholar 

  61. Shanmugam S, Sandberg K (1996) Ontogeny of angiotensin II receptors. Cell Biol Int 20:169–176

    Article  CAS  PubMed  Google Scholar 

  62. Shi T, Wang F, Stieren E, Tong Q (2005) SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem 280:13560–13567

    Article  CAS  PubMed  Google Scholar 

  63. Sinclair DA (2005) Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev 126:987–1002

    Article  CAS  PubMed  Google Scholar 

  64. Sorescu D, Griendling KK (2002) Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure. Congest Heart Fail 8:132–140

    Article  CAS  PubMed  Google Scholar 

  65. Steckelings UM, Kaschina E, Unger T (2005) The AT2 receptor–a matter of love and hate. Peptides 26:1401–1409

    Article  CAS  PubMed  Google Scholar 

  66. Sundaresan NR, Samant SA, Pillai VB, Rajamohan SB, Gupta MP (2008) SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol 28:6384–6401

    Article  CAS  PubMed  Google Scholar 

  67. Tauchi H, Sato T (1968) Age changes in size and number of mitochondria of human hepatic cells. J Gerontol 23:454–461

    CAS  PubMed  Google Scholar 

  68. Thompson MM, Oyama TT, Kelly FJ, Kennefick TM, Anderson S (2000) Activity and responsiveness of the renin-angiotensin system in the aging rat. Am J Physiol Regul Integr Comp Physiol 279:R1787–R1794

    CAS  PubMed  Google Scholar 

  69. Timmermans PB, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JA, Smith RD (1993) Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 45:205–251

    CAS  PubMed  Google Scholar 

  70. Wang M, Takagi G, Asai K, Resuello RG, Natividad FF, Vatner DE, Vatner SF, Lakatta EG (2003) Aging increases aortic MMP-2 activity and angiotensin II in nonhuman primates. Hypertension 41:1308–1316

    Article  CAS  PubMed  Google Scholar 

  71. Yang H, Yang T, Baur JA, Perez E, Matsui T, Carmona JJ, Lamming DW, Souza-Pinto NC, Bohr VA, Rosenzweig A, de Cabo R, Sauve AA, Sinclair DA (2007) Nutrient-sensitive mitochondrial NAD + levels dictate cell survival. Cell 130:1095–1107

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Paola Cassis is a recipient of a fellowship from Associazione Ricerca Trapianti (ART), Milan, Italy, and Sara Conti is a recipient of a fellowship from Fondazione Aiuti per la Ricerca sulle Malattie Rare (ARMR) in memory of Lidia D’Arcangelo, Bergamo, Italy. The research was partially supported by the European Commission within the EuReGene project (LSHG-CT-2004–005085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariela Benigni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cassis, P., Conti, S., Remuzzi, G. et al. Angiotensin receptors as determinants of life span. Pflugers Arch - Eur J Physiol 459, 325–332 (2010). https://doi.org/10.1007/s00424-009-0725-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-009-0725-4

Keywords

Navigation