Skip to main content
Log in

High glucose concentrations stimulate human monocyte sodium/hydrogen exchanger activity and modulate atherosclerosis-related functions

  • Ion Channels, Transporters
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

In the present study, the effect of high (20 mM) glucose concentrations on human monocyte sodium/hydrogen exchanger (NHE1) activity, scavenger receptor CD36 expression, cell adhesion, and cell migration have been investigated. Incubation with high glucose concentrations caused an increase in NHE1 activity, as estimated by internal pH and sodium-uptake measurements. This effect was specific for glucose, since it was not observed when monocytes were incubated in the presence of 20 mM of galactose, fructose, or mannitol. In addition, the activation of sodium uptake was inhibited by ethylisopropyl amiloride (EIPA), phloretine and cytochalasine B, and calphostin C. High glucose concentrations also increased the expression of CD36 receptors on the surface of monocytes and positively influenced monocyte migration and adhesion to laminin. EIPA added together with glucose counteracted these effects. The data of the present study suggest that a high glucose concentration can influence atherosclerosis-related monocyte functions via NHE1 activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Counillon L, Pouyssegur J (1995) Structure-function studies and molecular regulation of the growth factor activatable sodium-hydrogen exchanger (NHE-1). Cardiovasc Res 29:147–154

    Article  CAS  PubMed  Google Scholar 

  2. Putney LK, Denker SP, Barber DL (2002) The changing face of the Na+/H+ exchanger, NHE1: structure, regulation, and cellular actions. Annu Rev Pharmacol Toxicol 42:527–552

    Article  CAS  PubMed  Google Scholar 

  3. Kleyman TR, Cragoe EJ Jr (1990) Cation transport probes: the amiloride series. Methods Enzymol 191:739–755

    Article  CAS  PubMed  Google Scholar 

  4. Baumgarth M, Beier N, Gericke R (1997) (2-Methyl-5-(methylsulfonyl)benzoyl)guanidine Na+/H+ antiporter inhibitors. J Med Chem 40:2017–2034

    Article  CAS  PubMed  Google Scholar 

  5. Haller H, Drab M, Luft FC (1996) The role of hyperglycemia and hyperinsulinemia in the pathogenesis of diabetic angiopathy. Clin Nephrol 46:246–255

    CAS  PubMed  Google Scholar 

  6. Duckworth WC (2001) Hyperglycemia and cardiovascular disease. Curr Atheroscler Rep 3:383–391

    CAS  PubMed  Google Scholar 

  7. Klein R (1995) Hyperglycemia and microvascular and macrovascular disease in diabetes. Diabetes Care 18:258–268

    CAS  PubMed  Google Scholar 

  8. Srivastava AK (2001) Hyperglycemia-induced protein kinase signaling pathways in vascular smooth muscle cells: implications in the pathogenesis of vascular dysfunction in diabetes. Adv Exp Med Biol 498:311–318

    CAS  PubMed  Google Scholar 

  9. Park SH, Woo CH, Kim JH, Lee JH, Yang IS, Park KM, et al (2002) High glucose down-regulates angiotensin II binding via the PKC-MAPK-cPLA2 signal cascade in renal proximal tubule cells. Kidney Int 61:913–925

    Article  CAS  PubMed  Google Scholar 

  10. Hoshi S, Nomoto K, Kuromitsu J, Tomari S, Nagata M (2002) High glucose induced VEGF expression via PKC and ERK in glomerular podocytes. Biochem Biophys Res Commun 290:177–184

    Article  CAS  PubMed  Google Scholar 

  11. Bandyopadhyay G, Sajan MP, Kanoh Y, Standaert ML, Burke TR Jr, Quon MJ, et al (2000) Glucose activates mitogen-activated protein kinase (extracellular signal-regulated kinase) through proline-rich tyrosine kinase-2 and the Glut1 glucose transporter. J Biol Chem 275:40817–40826

    Article  CAS  PubMed  Google Scholar 

  12. Hannan KM, Little PJ (1998) Mechanisms regulating the vascular smooth muscle Na/H exchanger (NHE-1) in diabetes. Biochem Cell Biol 76:751–759

    Article  CAS  PubMed  Google Scholar 

  13. Cathcart MK (2004) Regulation of superoxide anion production by NADPH oxidase in monocytes/macrophages: contributions to atherosclerosis. Arterioscler Thromb Vasc Biol 24:23–28

    Article  CAS  PubMed  Google Scholar 

  14. Plenz G, Robenek H (1998) Monocytes/macrophages in atherosclerosis. Eur Cytokine Network 9:701–703

    CAS  Google Scholar 

  15. Sauvage M, Maziere P, Fathallah H, Giraud F (2000) Insulin stimulates NHE1 activity by sequential activation of phosphatidylinositol 3-kinase and protein kinase C zeta in human erythrocytes. Eur J Biochem 267:955–962

    Article  CAS  PubMed  Google Scholar 

  16. Bourikas D, Kaloyianni M, Bougoulia M, Zolota Z, Koliakos G (2003) Modulation of the Na(+)-H(+) antiport activity by adrenaline on erythrocytes from normal and obese individuals. Mol Cell Endocrinol 205:141–150

    Article  CAS  PubMed  Google Scholar 

  17. Verdegaal ME, Zegveld ST, van Furth R (1996) Heat shock protein 65 induces CD62e, CD106, and CD54 on cultured human endothelial cells and increases their adhesiveness for monocytes and granulocytes. J Immunol 157:369–376

    CAS  PubMed  Google Scholar 

  18. Krupka RM (1985) Asymmetrical binding of phloretin to the glucose transport system of human erythrocytes. J Membrane Biol 83:71–80

    CAS  Google Scholar 

  19. Basketter DA, Widdas WF (1978) Asymmetry of the hexose transfer system in human erythrocytes. Comparison of the effects of cytochalasin B, phloretin and maltose as competitive inhibitors. J Physiol 278:389–401

    CAS  PubMed  Google Scholar 

  20. Konstantinou-Tegou A, Kaloyianni M, Bourikas D, Koliakos G (2001) The effect of leptin on Na(+)-H(+) antiport (NHE 1) activity of obese and normal subjects erythrocytes. Mol Cell Endocrinol 183:11–18

    Article  CAS  PubMed  Google Scholar 

  21. Kaloyianni M, Bourikas D, Koliakos G (2001) The effect of insulin on Na+-H+ antiport activity of obese and normal subjects erythrocytes. Cell Physiol Biochem 11:253–258

    Article  CAS  PubMed  Google Scholar 

  22. Comolli R, Casale A, Mariotti D (1984) Amiloride and glucose effects on the intracellular pH of Yoshida rat ascites hepatoma AH-130 cells grown in vivo. Cell Biol Int Rep 8:297–307

    CAS  PubMed  Google Scholar 

  23. Siczkowski M, Ng LL (1996) Glucose-induced changes in activity and phosphorylation of the Na+/H+ exchanger, NHE-1, in vascular myocytes from Wistar-Kyoto and spontaneously hypertensive rats. Metabolism 45:114–119

    Article  CAS  PubMed  Google Scholar 

  24. Ganz MB, Hawkins K, Reilly RF ( 2000) High glucose induces the activity and expression of Na(+)/H(+) exchange in glomerular mesangial cells. Am J Physiol 278:F91–F96

    CAS  Google Scholar 

  25. Ceolotto G, Gallo A, Miola M, Sartori M, Trevisan R, Del Prato S, et al (1999) Protein kinase C activity is acutely regulated by plasma glucose concentration in human monocytes in vivo. Diabetes 48:1316–1322

    CAS  PubMed  Google Scholar 

  26. Bianchini L, L’Allemain G, Pouyssegur J (1997) The p42/p44 mitogen-activated protein kinase cascade is determinant in mediating activation of the Na+/H+ exchanger (NHE1 isoform) in response to growth factors. J Biol Chem 272:271–279

    Article  CAS  PubMed  Google Scholar 

  27. Ceolotto G, Conlin P, Clari G, Semplicini A, Canessa M (1997) Protein kinase C and insulin regulation of red blood cell Na+/H+ exchange. Am J Physiol 272(3 Pt 1):C818–C826

    CAS  PubMed  Google Scholar 

  28. Siczkowski M, Ng LL (1996) Phorbol ester activation of the rat vascular myocyte Na(+)-H(+) exchanger isoform 1. Hypertension 27:859–866

    CAS  PubMed  Google Scholar 

  29. Sampson MJ, Davies IR, Braschi S, Ivory K, Hughes DA (2003) Increased expression of a scavenger receptor (CD36) in monocytes from subjects with Type 2 diabetes. Atherosclerosis 167:129–134

    Article  CAS  PubMed  Google Scholar 

  30. Griffin E, Re A, Hamel N, Fu C, Bush H, McCaffrey T, et al (2001) A link between diabetes and atherosclerosis: Glucose regulates expression of CD36 at the level of translation. Nat Med 7:840–846

    Article  CAS  PubMed  Google Scholar 

  31. Comolli R, Zanoni L, Mauri C, Leonardi MG (1985) Amiloride inhibits protein synthesis and lowers the intracellular pH in exponential growing Yoshida rat ascites hepatoma (AH 130) cells: evidence for a role of the Na+/H+ exchanger. Cell Biol Int Rep 9:1017–1025

    CAS  PubMed  Google Scholar 

  32. Comolli R, Leonardi MG, Alberti P, Frigerio M (1986) Protein synthesis, ribosomal protein S6 phosphorylation in vitro and the effects of amiloride: SDS gel electrophoresis studies in the Yoshida ascites tumor (AH 130) grown in vivo. Cell Biol Int Rep 10:821–831

    CAS  PubMed  Google Scholar 

  33. Karamessinis PM, Tzinia AK, Kitsiou PV, Stetler-Stevenson WG, Michael AF, Fan WW, et al (2002) Proximal tubular epithelial cell integrins respond to high glucose by altered cell-matrix interactions and differentially regulate matrixin expression. Lab Invest 82:1081–1093

    CAS  PubMed  Google Scholar 

  34. Kitsiou PV, Tzinia AK, Stetler-Stevenson WG, Michael AF, Fan WW, Zhou B, et al (2003) Glucose-induced changes in integrins and matrix-related functions in cultured human glomerular epithelial cells. Am J Physiol 284:F671–F679

    CAS  Google Scholar 

  35. Grinstein S, Woodside M, Waddell TK, Downey GP, Orlowski J, Pouyssegur J, et al (1993) Focal localization of the NHE-1 isoform of the Na+/H+ antiport: assessment of effects on intracellular pH. EMBO J 12:5209–5218

    CAS  PubMed  Google Scholar 

  36. Plopper GE, McNamee HP, Dike LE, Bojanowski K, Ingber DE (1995) Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex. Mol Biol Cell 6:1349–1365

    CAS  PubMed  Google Scholar 

  37. Lagana A, Vadnais J, Le PU, Nguyen TN, Laprade R, Nabi IR, et al (2000) Regulation of the formation of tumor cell pseudopodia by the Na(+)/H(+) exchanger NHE1. J Cell Sci 113 (Pt 20):3649–3662

    CAS  PubMed  Google Scholar 

  38. Denker SP, Barber DL (2002) Cell migration requires both ion translocation and cytoskeletal anchoring by the Na-H exchanger NHE1. J Cell Biol 159:1087–1096

    Article  CAS  PubMed  Google Scholar 

  39. Chen YX, O’Brien ER (2003) Ethyl isopropyl amiloride inhibits smooth muscle cell proliferation and migration by inducing apoptosis and antagonizing urokinase plasminogen activator activity. Can J Physiol Pharmacol 81:730–739

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. Melpomeni Christophoridou for excellent technical and secretarial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Koliakos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koliakos, G., Zolota, Z., Paletas, K. et al. High glucose concentrations stimulate human monocyte sodium/hydrogen exchanger activity and modulate atherosclerosis-related functions. Pflugers Arch - Eur J Physiol 449, 298–306 (2004). https://doi.org/10.1007/s00424-004-1340-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-004-1340-z

Keywords

Navigation