Skip to main content

Advertisement

Log in

Food fight! Parenteral nutrition, enteral stimulation and gut-derived mucosal immunity

  • Current Concepts in Clinical Surgery
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Introduction

Nutrition support is an integral component of modern patient care. Type and route of nutritional support impacts clinical infectious outcomes in critically injured patients.

Discussion

This article reviews the relationships between type and route of nutrition and gut-derived mucosal immunity in both the clinical and laboratory settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fletcher AG Jr, Gimbel NS, Riegel C (1950) Parenteral nutrition with human serum albumin as the source of protein in the early post-operative period. Surg Gynecol Obstet 90:151–154

    PubMed  Google Scholar 

  2. Turner FP (1955) Hyperalimentation in the management of pyloric obstruction with comments on certain theoretical relationships between protein deficiency and peptic ulcer. Gastroenterology 29:1061–1068

    PubMed  CAS  Google Scholar 

  3. Wretlind A (1955) The possibilities of providing adequate parenteral nutrition. Nord Med 53:1013–1019

    PubMed  CAS  Google Scholar 

  4. McKibbin JM, Ferry RM, Stare FJ (1946) Parenteral nutrition. Ii. The utilization of emulsified fat given intravenously. J Clin Invest 25:679–686

    PubMed  CAS  Google Scholar 

  5. Watkin DM (1965) Fecal excretion of lipids before, during and after hyperalimentation with fat administered intravenously. Am J Clin Nutr 16:213–223

    PubMed  CAS  Google Scholar 

  6. Watkin DM, Steinfeld JL (1965) Nutrient and energy metabolism in patients with and without cancer during hyperalimentation with fat administered intravenously. Am J Clin Nutr 16:182–212

    PubMed  CAS  Google Scholar 

  7. Dudrick SJ (1970) Intravenous hyperalimentation. Surgery 68:726–727

    PubMed  CAS  Google Scholar 

  8. Dudrick SJ, Allen TR (1971) Long-term intravenous hyperalimentation. Del Med J 43:149–154

    PubMed  CAS  Google Scholar 

  9. Dudrick SJ, Wilmore DW, Vars HM et al (1968) Long-term total parenteral nutrition with growth, development, and positive nitrogen balance. Surgery 64:134–142

    PubMed  CAS  Google Scholar 

  10. Kudsk KA, Croce MA, Fabian TC et al (1992) Enteral versus parenteral feeding. Effects on septic morbidity after blunt and penetrating abdominal trauma. Ann Surg 215:503–511, (discussion 511–3)

    PubMed  CAS  Google Scholar 

  11. Moore EE, Jones TN (1986) Benefits of immediate jejunostomy feeding after major abdominal trauma—a prospective, randomized study. J Trauma 26:874–881

    PubMed  CAS  Google Scholar 

  12. Moore FA, Moore EE, Jones TN et al (1989) TEN versus TPN following major abdominal trauma–reduced septic morbidity. J Trauma 29:916–22, (discussion 922–3)

    PubMed  CAS  Google Scholar 

  13. Moore FA, Feliciano DV, Andrassy RJ et al (1992) Early enteral feeding, compared with parenteral, reduces postoperative septic complications. The results of a meta-analysis. Ann Surg 216:172–183

    PubMed  CAS  Google Scholar 

  14. McGhee JR, Mestecky J, Dertzbaugh MT et al (1992) The mucosal immune system: from fundamental concepts to vaccine development. Vaccine 10:75–88

    PubMed  CAS  Google Scholar 

  15. Kudsk KA (2002) Current aspects of mucosal immunology and its influence by nutrition. Am J Surg 183:390–398

    PubMed  Google Scholar 

  16. Kang W, Kudsk KA (2007) Is there evidence that the gut contributes to mucosal immunity in humans? JPEN J Parenter Enteral Nutr 31:246–258

    PubMed  CAS  Google Scholar 

  17. Tomasi TB Jr, Tan EM, Solomon A et al (1965) Characteristics of an immune system common to certain external secretions. J Exp Med 121:101–124

    PubMed  CAS  Google Scholar 

  18. Mestecky J, McGhee JR, Arnold RR et al (1978) Selective induction of an immune response in human external secretions by ingestion of bacterial antigen. J Clin Invest 61:731–737

    PubMed  CAS  Google Scholar 

  19. Czerkinsky C, Prince SJ, Michalek SM et al (1987) IgA antibody-producing cells in peripheral blood after antigen ingestion: evidence for a common mucosal immune system in humans. Proc Natl Acad Sci U S A 84:2449–2453

    PubMed  CAS  Google Scholar 

  20. Brandtzaeg P, Pabst R (2004) Let’s go mucosal: communication on slippery ground. Trends Immunol 25:570–577

    PubMed  CAS  Google Scholar 

  21. Craig SW, Cebra JJ (1971) Peyer’s patches: an enriched source of precursors for IgA-producing immunocytes in the rabbit. J Exp Med 134:188–200

    PubMed  CAS  Google Scholar 

  22. Husband AJ, Gowans JL (1978) The origin and antigen-dependent distribution of IgA-containing cells in the intestine. J Exp Med 148:1146–1160

    PubMed  CAS  Google Scholar 

  23. Brandtzaeg P, Johansen FE (2005) Mucosal B cells: phenotypic characteristics, transcriptional regulation, and homing properties. Immunol Rev 206:32–63

    PubMed  CAS  Google Scholar 

  24. Jang MH, Kweon MN, Iwatani K et al (2004) Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc Natl Acad Sci U S A 101:6110–6115

    PubMed  CAS  Google Scholar 

  25. Pachynski RK, Wu SW, Gunn MD et al (1998) Secondary lymphoid-tissue chemokine (SLC) stimulates integrin alpha 4 beta 7-mediated adhesion of lymphocytes to mucosal addressin cell adhesion molecule-1 (MAdCAM-1) under flow. J Immunol 161:952–956

    PubMed  CAS  Google Scholar 

  26. Brandtzaeg P, Berstad AE, Farstad IN (1997) Mucosal immunity—a major adaptive defence mechanism. Behring Inst Mitt (98):1–23

    Google Scholar 

  27. Lebman DA, Coffman RL (1994) Cytokines in the mucosal immune system. In: Ogra PL, Lamm ME, McGhee JR (eds) Handbook of mucosal immunology. Academic, San Diego, pp 243–249

    Google Scholar 

  28. Brandtzaeg P (1974) Presence of J chain in human immunocytes containing various immunoglobulin classes. Nature 252:418–420

    PubMed  CAS  Google Scholar 

  29. Brandtzaeg P, Prydz H (1984) Direct evidence for an integrated function of J chain and secretory component in epithelial transport of immunoglobulins. Nature 311:71–73

    PubMed  CAS  Google Scholar 

  30. Kaetzel CS, Mostov K (2005) Immunoglobulin transport and the polymeric immunoglobulin receptor. In: Mestecky J, Bienenstock J, Lamm M et al (eds) Mucosal immunology. Academic, San Diego, pp 211–250

    Google Scholar 

  31. Niederman MS, Merrill WW, Polomski LM et al (1986) Influence of sputum IgA and elastase on tracheal cell bacterial adherence. Am Rev Respir Dis 133:255–260

    PubMed  CAS  Google Scholar 

  32. Kress HG, Scheidewig C, Schmidt H et al (1999) Reduced incidence of postoperative infection after intravenous administration of an immunoglobulin A- and immunoglobulin M-enriched preparation in anergic patients undergoing cardiac surgery. Crit Care Med 27:1281–1287

    PubMed  CAS  Google Scholar 

  33. Lycke N, Eriksen L, Holmgren J (1987) Protection against cholera toxin after oral immunization is thymus-dependent and associated with intestinal production of neutralizing IgA antitoxin. Scand J Immunol 25:413–419

    PubMed  CAS  Google Scholar 

  34. Fagarasan S, Honjo T (2003) Intestinal IgA synthesis: regulation of front-line body defences. Nat Rev Immunol 3:63–72

    PubMed  CAS  Google Scholar 

  35. Macpherson AJ, Gatto D, Sainsbury E et al (2000) A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288:2222–2226

    PubMed  CAS  Google Scholar 

  36. Kroese FG, Butcher EC, Stall AM et al (1989) Many of the IgA producing plasma cells in murine gut are derived from self-replenishing precursors in the peritoneal cavity. Int Immunol 1:75–84

    PubMed  CAS  Google Scholar 

  37. Fujimura Y, Haruma K, Owen RL (2007) Bombesin prevents the atrophy of Peyer’s patches and the dysfunction of M cells in rabbits receiving long-term parenteral nutrition. JPEN J Parenter Enteral Nutr 31:75–85

    PubMed  CAS  Google Scholar 

  38. Li J, Kudsk KA, Gocinski B et al (1995) Effects of parenteral and enteral nutrition on gut-associated lymphoid tissue. J Trauma 39:44–51, (discussion 51–52)

    PubMed  CAS  Google Scholar 

  39. King BK, Li J, Kudsk KA (1997) A temporal study of TPN-induced changes in gut-associated lymphoid tissue and mucosal immunity. Arch Surg 132:1303–1309

    PubMed  CAS  Google Scholar 

  40. Brandtzaeg P, Farstad IN, Johansen FE et al (1999) The B-cell system of human mucosae and exocrine glands. Immunol Rev 171:45–87

    PubMed  CAS  Google Scholar 

  41. Bargatze RF, Jutila MA, Butcher EC (1995) Distinct roles of L-selectin and integrins alpha 4 beta 7 and LFA-1 in lymphocyte homing to Peyer’s patch-HEV in situ: the multistep model confirmed and refined. Immunity 3:99–108

    PubMed  CAS  Google Scholar 

  42. Berlin C, Berg EL, Briskin MJ et al (1993) Alpha 4 beta 7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 74:185–195

    PubMed  CAS  Google Scholar 

  43. Zarzaur BL, Fukatsu K, Johnson CJ et al (2001) A temporal study in diet induced changes in Peyer patch MAdCAM-1 expression. Surg Forum 52:194–196

    Google Scholar 

  44. Gomez FE, Lan J, Kang W et al (2007) Parenteral nutrition and fasting reduces mucosal addressin cellular adhesion molecule-1 (MAdCAM-1) mRNA in Peyer’s patches of mice. JPEN J Parenter Enteral Nutr 31:47–52

    PubMed  CAS  Google Scholar 

  45. Ikeda S, Kudsk KA, Fukatsu K et al (2003) Enteral feeding preserves mucosal immunity despite in vivo MAdCAM-1 blockade of lymphocyte homing. Ann Surg 237:677–85, (discussion 685)

    PubMed  Google Scholar 

  46. Kang W, Gomez FE, Lan J et al (2006) Parenteral nutrition impairs gut-associated lymphoid tissue and mucosal immunity by reducing lymphotoxin Beta receptor expression. Ann Surg 244:392–399

    PubMed  Google Scholar 

  47. Browning JL, Allaire N, Ngam-Ek A et al (2005) Lymphotoxin-beta receptor signaling is required for the homeostatic control of HEV differentiation and function. Immunity 23:539–550

    PubMed  CAS  Google Scholar 

  48. Dohi T, Rennert PD, Fujihashi K et al (2001) Elimination of colonic patches with lymphotoxin beta receptor-Ig prevents Th2 cell-type colitis. J Immunol 167:2781–2790

    PubMed  CAS  Google Scholar 

  49. Dejardin E, Droin NM, Delhase M et al (2002) The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity 17:525–535

    PubMed  CAS  Google Scholar 

  50. Kang W, Kudsk KA, Sano Y et al (2007) Effects of lymphotoxin beta receptor blockade on intestinal mucosal immunity. JPEN J Parenter Enteral Nutr 31:358–364, (discussion 364–365)

    PubMed  CAS  Google Scholar 

  51. Janu P, Li J, Renegar KB et al (1997) Recovery of gut-associated lymphoid tissue and upper respiratory tract immunity after parenteral nutrition. Ann Surg 225:707–715, (discussion 715–717)

    PubMed  CAS  Google Scholar 

  52. Parrott DM (1976) The gut as a lymphoid organ. Clin Gastroenterol 5:211–228

    PubMed  CAS  Google Scholar 

  53. Alverdy JC, Aoys E, Moss GS (1988) Total parenteral nutrition promotes bacterial translocation from the gut. Surgery 104:185–190

    PubMed  CAS  Google Scholar 

  54. Alverdy JC, Aoys E, Moss GS (1990) Effect of commercially available chemically defined liquid diets on the intestinal microflora and bacterial translocation from the gut. JPEN J Parenter Enteral Nutr 14:1–6

    PubMed  CAS  Google Scholar 

  55. Spaeth G, Gottwald T, Specian RD et al (1994) Secretory immunoglobulin A, intestinal mucin, and mucosal permeability in nutritionally induced bacterial translocation in rats. Ann Surg 220:798–808

    PubMed  CAS  Google Scholar 

  56. Deitch EA, Ma WJ, Ma L et al (1990) Protein malnutrition predisposes to inflammatory-induced gut-origin septic states. Ann Surg 211:560–567, (discussion 567–568)

    Article  PubMed  CAS  Google Scholar 

  57. Nayci A, Atis S, Ersoz G et al (2004) Gut decontamination prevents bronchoscopy-induced bacterial translocation. An experimental study in rats. Respiration 71:66–71

    PubMed  Google Scholar 

  58. Wu GH, Wang H, Zhang YW et al (2004) Glutamine supplemented parenteral nutrition prevents intestinal ischemia-reperfusion injury in rats. World J Gastroenterol 10:2592–2594

    PubMed  CAS  Google Scholar 

  59. MacFie J, O’Boyle C, Mitchell CJ et al (1999) Gut origin of sepsis: a prospective study investigating associations between bacterial translocation, gastric microflora, and septic morbidity. Gut 45:223–228

    PubMed  CAS  Google Scholar 

  60. O’Boyle CJ, MacFie J, Mitchell CJ et al (1998) Microbiology of bacterial translocation in humans. Gut 42:29–35

    PubMed  CAS  Google Scholar 

  61. Sedman PC, MacFie J, Palmer MD et al (1995) Preoperative total parenteral nutrition is not associated with mucosal atrophy or bacterial translocation in humans. Br J Surg 82:1663–1667

    PubMed  CAS  Google Scholar 

  62. Macpherson AJ, McCoy KD, Johansen FE et al (2008) The immune geography of IgA induction and function. Mucosal Immunology 1:11–22

    CAS  PubMed  Google Scholar 

  63. Fukatsu K, Lundberg AH, Hanna MK et al (1999) Route of nutrition influences intercellular adhesion molecule-1 expression and neutrophil accumulation in intestine. Arch Surg 134:1055–1060

    PubMed  CAS  Google Scholar 

  64. Fukatsu K, Lundberg AH, Hanna MK et al (2000) Increased expression of intestinal P-selectin and pulmonary E-selectin during intravenous total parenteral nutrition. Arch Surg 135:1177–1182

    PubMed  CAS  Google Scholar 

  65. Fukatsu K, Kudsk KA, Zarzaur BL et al (2002) Increased ICAM-1 and beta2 integrin expression in parenterally fed mice after a gut ischemic insult. Shock 18:119–124

    PubMed  Google Scholar 

  66. Fukatsu K, Zarzaur BL, Johnson CD et al (2001) Enteral nutrition prevents remote organ injury and death after a gut ischemic insult. Ann Surg 233:660–668

    PubMed  CAS  Google Scholar 

  67. Wildhaber BE, Yang H, Spencer AU et al (2005) Lack of enteral nutrition—effects on the intestinal immune system. J Surg Res 123:8–16

    PubMed  CAS  Google Scholar 

  68. Lin MT, Saito H, Fukushima R et al (1997) Preoperative total parenteral nutrition influences postoperative systemic cytokine responses after colorectal surgery. Nutrition 13:8–12

    PubMed  CAS  Google Scholar 

  69. Takagi K, Yamamori H, Toyoda Y et al (2000) Modulating effects of the feeding route on stress response and endotoxin translocation in severely stressed patients receiving thoracic esophagectomy. Nutrition 16:355–360

    PubMed  CAS  Google Scholar 

  70. Fong YM, Marano MA, Barber A et al (1989) Total parenteral nutrition and bowel rest modify the metabolic response to endotoxin in humans. Ann Surg 210:449–456, (discussion 456–457)

    PubMed  CAS  Google Scholar 

  71. Brandtzaeg P, Kiyono H, Pabst R et al (2008) Terminology: nomenclature of mucosa-associated lymphoid tissue. Mucosal Immunology 1:31–37

    CAS  PubMed  Google Scholar 

  72. Sonoda E, Hitoshi Y, Yamaguchi N et al (1992) Differential regulation of IgA production by TGF-beta and IL-5: TGF-beta induces surface IgA-positive cells bearing IL-5 receptor, whereas IL-5 promotes their survival and maturation into IgA-secreting cells. Cell Immunol 140:158–172

    PubMed  CAS  Google Scholar 

  73. Wu Y, Kudsk KA, DeWitt RC et al (1999) Route and type of nutrition influence IgA-mediating intestinal cytokines. Ann Surg 229:662–667, (discussion 667–8)

    PubMed  CAS  Google Scholar 

  74. Fukatsu K, Kudsk KA, Zarzaur BL et al (2001) TPN decreases IL-4 and IL-10 mRNA expression in lipopolysaccharide stimulated intestinal lamina propria cells but glutamine supplementation preserves the expression. Shock 15:318–322

    PubMed  CAS  Google Scholar 

  75. Kaetzel CS, Bruno MEC (2007) Epithelial transport of IgA by the ploymeric immunoglobulin receptor. In: Kaetzel CS (ed) Mucosal immune defense: immunoglobulin A. Springer, New York, pp 43–89

    Google Scholar 

  76. Hirunsatit R, Kongruttanachok N, Shotelersuk K et al (2003) Polymeric immunoglobulin receptor polymorphisms and risk of nasopharyngeal cancer. BMC Genet 4:3

    PubMed  Google Scholar 

  77. Obara W, Iida A, Suzuki Y et al (2003) Association of single-nucleotide polymorphisms in the polymeric immunoglobulin receptor gene with immunoglobulin A nephropathy (IgAN) in Japanese patients. J Hum Genet 48:293–299

    PubMed  CAS  Google Scholar 

  78. Johansen FE, Braathen R, Manthe E et al (2007) Regulation of the mucosal IgA system. In: Kaetzel CS (ed) Mucosal immune defense: immunoglobulin A. Springer, New York, pp 111–143

    Google Scholar 

  79. Lycke N, Erlandsson L, Ekman L et al (1999) Lack of J chain inhibits the transport of gut IgA and abrogates the development of intestinal antitoxic protection. J Immunol 163:913–919

    PubMed  CAS  Google Scholar 

  80. Hendrickson BA, Conner DA, Ladd DJ et al (1995) Altered hepatic transport of immunoglobulin A in mice lacking the J chain. J Exp Med 182:1905–1911

    PubMed  CAS  Google Scholar 

  81. Mazanec MB, Nedrud JG, Kaetzel CS et al (1993) A three-tiered view of the role of IgA in mucosal defense. Immunol Today 14:430–435

    PubMed  CAS  Google Scholar 

  82. de Oliveira IR, de Araujo AN, Bao SN et al (2001) Binding of lactoferrin and free secretory component to enterotoxigenic Escherichia coli. FEMS Microbiol Lett 203:29–33

    PubMed  Google Scholar 

  83. Boren T, Falk P, Roth KA et al (1993) Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 262:1892–1895

    PubMed  CAS  Google Scholar 

  84. Dallas SD, Rolfe RD (1998) Binding of Clostridium difficile toxin A to human milk secretory component. J Med Microbiol 47:879–888

    Article  PubMed  CAS  Google Scholar 

  85. Royle L, Roos A, Harvey DJ et al (2003) Secretory IgA N- and O-glycans provide a link between the innate and adaptive immune systems. J Biol Chem 278:20140–20153

    PubMed  CAS  Google Scholar 

  86. Kaetzel CS (2001) Polymeric Ig receptor: defender of the fort or Trojan horse? Curr Biol 11:R35–R38

    PubMed  CAS  Google Scholar 

  87. Sano Y, Gomez FE, Kang W et al (2007) Intestinal polymeric immunoglobulin receptor (pIgR) is affected by type and route of nutrition. JPEN 31:351–351

    CAS  Google Scholar 

  88. Chapin SJ, Enrich C, Aroeti B et al (1996) Calmodulin binds to the basolateral targeting signal of the polymeric immunoglobulin receptor. J Biol Chem 271:1336–1342

    PubMed  CAS  Google Scholar 

  89. Okamoto CT, Song W, Bomsel M et al (1994) Rapid internalization of the polymeric immunoglobulin receptor requires phosphorylated serine 726. J Biol Chem 269:15676–15682

    PubMed  CAS  Google Scholar 

  90. Johnson CD, Kudsk KA, Fukatsu K et al (2003) Route of nutrition influences generation of antibody-forming cells and initial defense to an active viral infection in the upper respiratory tract. Ann Surg 237:565–573

    PubMed  Google Scholar 

  91. Renegar KB, Johnson CD, Dewitt RC et al (2001) Impairment of mucosal immunity by total parenteral nutrition: requirement for IgA in murine nasotracheal anti-influenza immunity. J Immunol 166:819–825

    PubMed  CAS  Google Scholar 

  92. King BK, Kudsk KA, Li J et al (1999) Route and type of nutrition influence mucosal immunity to bacterial pneumonia. Ann Surg 229:272–278

    PubMed  CAS  Google Scholar 

  93. Kudsk KA, Hermsen JL, Genton L et al (2008) Injury stimulates an innate respiratory immunoglobulin a immune response in humans. J Trauma 64:316–323, (discussion 323–325)

    PubMed  Google Scholar 

  94. Pine R (1997) Convergence of TNFalpha and IFNgamma signalling pathways through synergistic induction of IRF-1/ISGF-2 is mediated by a composite GAS/kappaB promoter element. Nucleic Acids Res 25:4346–4354

    PubMed  CAS  Google Scholar 

  95. Schjerven H, Tran TN, Brandtzaeg P et al (2004) De novo synthesized RelB mediates TNF-induced up-regulation of the human polymeric Ig receptor. J Immunol 173:1849–1857

    PubMed  CAS  Google Scholar 

  96. Bruno ME, Kaetzel CS (2005) Long-term exposure of the HT-29 human intestinal epithelial cell line to TNF causes sustained up-regulation of the polymeric Ig receptor and proinflammatory genes through transcriptional and posttranscriptional mechanisms. J Immunol 174:7278–7284

    PubMed  CAS  Google Scholar 

  97. Schmidt LD, Xie Y, Lyte M et al (2007) Autonomic neurotransmitters modulate immunoglobulin A secretion in porcine colonic mucosa. J Neuroimmunol 185:20–28

    PubMed  CAS  Google Scholar 

  98. Li J, Kudsk KA, Janu P et al (1997) Effect of glutamine-enriched total parenteral nutrition on small intestinal gut-associated lymphoid tissue and upper respiratory tract immunity. Surgery 121:542–549

    PubMed  CAS  Google Scholar 

  99. DeWitt RC, Wu Y, Renegar KB et al (1999) Glutamine-enriched total parenteral nutrition preserves respiratory immunity and improves survival to a Pseudomonas Pneumonia. J Surg Res 84:13–18

    PubMed  CAS  Google Scholar 

  100. Erspamer V, Erpamer GF, Inselvini M (1970) Some pharmacological actions of alytesin and bombesin. J Pharm Pharmacol 22:875–876

    PubMed  CAS  Google Scholar 

  101. McDonald TJ, Nilsson G, Vagne M et al (1978) A gastrin releasing peptide from the porcine nonantral gastric tissue. Gut 19:767–774

    PubMed  CAS  Google Scholar 

  102. Delle Fave G, Kohn A, De Magistris L et al (1983) Effects of bombesin on gastrin and gastric acid secretion in patients with duodenal ulcer. Gut 24:231–235

    PubMed  CAS  Google Scholar 

  103. Lieverse RJ, Jansen JB, van de Zwan A et al (1993) Bombesin reduces food intake in lean man by a cholecystokinin-independent mechanism. J Clin Endocrinol Metab 76:1495–1498

    PubMed  CAS  Google Scholar 

  104. Lieverse RJ, Masclee AA, Jansen JB et al (1998) Obese women are less sensitive for the satiety effects of bombesin than lean women. Eur J Clin Nutr 52:207–212

    PubMed  CAS  Google Scholar 

  105. Vulchanova L, Casey MA, Crabb GW et al (2007) Anatomical evidence for enteric neuroimmune interactions in Peyer’s patches. J Neuroimmunol 185:64–74

    PubMed  CAS  Google Scholar 

  106. DeWitt RC, Wu Y, Renegar KB et al (2000) Bombesin recovers gut-associated lymphoid tissue and preserves immunity to bacterial pneumonia in mice receiving total parenteral nutrition. Ann Surg 231:1–8

    PubMed  CAS  Google Scholar 

  107. Zarzaur BL, Wu Y, Fukatsu K et al (2002) The neuropeptide bombesin improves IgA-mediated mucosal immunity with preservation of gut interleukin-4 in total parenteral nutrition-fed mice. Surgery 131:59–65

    PubMed  Google Scholar 

  108. Zarzaur BL, Ikeda S, Johnson CD et al (2002) Mucosal immunity preservation with bombesin or glutamine is not dependent on mucosal addressin cell adhesion molecule-1 expression. JPEN J Parenter Enteral Nutr 26:265–270, (discussion 270)

    PubMed  CAS  Google Scholar 

  109. Annane D, Clair B, Mathieu B et al (1996) Immunoglobulin A levels in bronchial samples during mechanical ventilation and onset of nosocomial pneumonia in critically ill patients. Am J Respir Crit Care Med 153:1585–1590

    PubMed  CAS  Google Scholar 

  110. Perkkio M, Savilahti E (1980) Time of appearance of immunoglobulin-containing cells in the mucosa of the neonatal intestine. Pediatr Res 14:953–955

    PubMed  CAS  Google Scholar 

  111. Knox WF (1986) Restricted feeding and human intestinal plasma cell development. Arch Dis Child 61:744–749

    PubMed  CAS  Google Scholar 

  112. Machado CS, Rodrigues MA, Maffei HV (1994) Assessment of gut intraepithelial lymphocytes during late gestation and the neonatal period. Biol Neonate 66:324–329

    Article  PubMed  CAS  Google Scholar 

  113. Okamoto K, Fukatsu K, Ueno C et al (2005) T lymphocyte numbers in human gut associated lymphoid tissue are reduced without enteral nutrition. JPEN J Parenter Enteral Nutr 29:56–58

    PubMed  Google Scholar 

  114. Wijesinha SS, Steer HW (1982) Studies of the immunoglobulin-producing cells of the human intestine: the defunctioned bowel. Gut 23:211–214

    PubMed  CAS  Google Scholar 

  115. Buchman AL, Mestecky J, Moukarzel A et al (1995) Intestinal immune function is unaffected by parenteral nutrition in man. J Am Coll Nutr 14:656–661

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by NIH grant R01 GM53439. This material is based upon work supported in part by the Office of Research and Development, Biomedical Laboratory R&D Service, Department of Veterans Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Kudsk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermsen, J.L., Sano, Y. & Kudsk, K.A. Food fight! Parenteral nutrition, enteral stimulation and gut-derived mucosal immunity. Langenbecks Arch Surg 394, 17–30 (2009). https://doi.org/10.1007/s00423-008-0339-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-008-0339-x

Keywords

Navigation