Skip to main content

Advertisement

Log in

The effects of accumulated muscle fatigue on the mechanomyographic waveform: implications for injury prediction

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Muscle fatigue has been identified as a risk factor for spontaneous muscle injuries in sport. However, few studies have investigated the accumulated effects of muscle fatigue on human muscle contractile properties. This study aimed to determine whether repeated bouts of exercise inducing acute fatigue leads to longer-term fatigue-related changes in muscle contractile properties.

Methods

Maximum voluntary contraction (MVC), electromyographic (EMG) and mechanomyographic (MMG) measures were recorded in the biceps brachii of 11 participants for 13 days, before and after a maximally fatiguing exercise protocol. The exercise protocol involved participants repetitively lifting a weight (concentric contractions only) equal to 40 % MVC, until failure.

Results

A significant (p < 0.05) acute pre- to post-exercise decline of biceps brachii MVC and median power frequency (MPF) was observed each day, whilst no difference existed between pre-exercise MVC or MPF values on subsequent days (days 2–13). However, decreases in number of lift repetitions and in pre-exercise MMG values of muscle belly displacement, contraction velocity and half-relaxation velocity were observed through to day 13.

Conclusions

Whilst MVC and MPF measures resolved by the following day’s test session, MMG measures indicated an ongoing decrement in muscle performance through days 2–13 consistent with the decline in lift repetitions observed. These results suggest that MMG may be more sensitive in detecting accumulated muscle fatigue than the ‘gold standard’ measures of MVC/MPF. Considering that muscle fatigue leads to injury, the on-going monitoring of MMG derived contractile properties of muscles in athletes may aid in the prediction of fatigued-induced muscle injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

1/2 T r :

Half-relaxation time

1/2 V r :

Half-relaxation velocity

ANOVA:

Analysis of variance

Ca2+ :

Calcium

D max :

Maximal muscle belly displacement

EMG:

Electromyography

MMG:

Mechanomyography

MPF:

Median power frequency

MVC:

Maximum voluntary contraction

PNS:

Percutaneous neuromuscular stimulation

SD:

Standard deviation

SR:

Sarcoplasmic reticulum

T c :

Contraction time

V c :

Contraction velocity

References

  • Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332

    Article  CAS  PubMed  Google Scholar 

  • Allison GTG (2002) The relationship between EMG median frequency and low frequency band amplitude changes at different levels of muscle capacity. Clin Biomech 17:464

    Article  CAS  Google Scholar 

  • Baptista RR, Scheeren EM, Macintosh BR, Vaz MA (2009) Low-frequency fatigue at maximal and submaximal muscle contractions. Braz J Med Biol Res 42:380–385

    Article  CAS  PubMed  Google Scholar 

  • Belcastro AN, Rossiter M, Low MP, Sopper MM (1981) Calcium activation of sarcoplasmic reticulum ATPase following strenuous activity. Can J Phyiol Pharm 59:1214–1218

    Article  CAS  Google Scholar 

  • Bigland-Ritchie B, Jones DA, Woods JJ (1979) Excitation frequency and muscle fatigue: electrical responses during human voluntary and stimulated contractions. Exp Neurol 64:414–427

    Article  CAS  PubMed  Google Scholar 

  • Bigland-Ritchie B, Furbush F, Woods JJ (1986) Fatigue of intermittent submaximal voluntary contractions: central and peripheral factors. J Appl Physiol 61:421–429

    CAS  PubMed  Google Scholar 

  • Binder-Macleod SA, Snyder-Mackler L (1993) Muscle fatigue: clinical implications for fatigue assessment and neuromuscular electrical stimulation. Phys Ther 73:902–910

    CAS  PubMed  Google Scholar 

  • Blangsted AK, Sjogaard G, Madeleine P, Olsen HB, Sogaard K (2005) Voluntary low-force contraction elicits prolonged low-frequency fatigue and changes in surface electromyography and mechanomyography. J Electromyogr Kinesiol 15:138–148

    Article  PubMed  Google Scholar 

  • Boucher JA, Abboud J, Descarreaux M (2012) The influence of acute back muscle fatigue and fatigue recovery on trunk sensorimotor control. J Manip Physiol Ther 35:662–668

    Article  Google Scholar 

  • Brockett CC (1997) A comparison of the effects of concentric versus eccentric exercise on force and position sense at the human elbow joint. Brain Res 771:251

    Article  CAS  PubMed  Google Scholar 

  • Byrd SK, Bode AK, Klug GA (1989) Effects of exercise of varying duration on sarcoplasmic reticulum function. J Appl Physiol 66:1383–1389

    CAS  PubMed  Google Scholar 

  • Ce E, Rampichini S, Limonta E, Esposito F (2013) Torque and mechanomyogram correlations during muscle relaxation: effects of fatigue and time-course of recovery. J Electromyogr Kinesiol 23:1295–1303

    Article  PubMed  Google Scholar 

  • Eberstein A, Beattie B (1985) Simultaneous measurement of muscle conduction velocity and EMG power spectrum changes during fatigue. Muscle Nerve 8:768–773

    Article  CAS  PubMed  Google Scholar 

  • Edwards RH, Hill DK, Jones DA, Merton PA (1977) Fatigue of long duration in human skeletal muscle after exercise. J Physiol 272:769–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekstrand J, Hagglund M, Walden M (2011a) Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med 39:1226–1232

    Article  PubMed  Google Scholar 

  • Ekstrand J, Hagglund M, Walden M (2011b) Injury incidence and injury patterns in professional football: the UEFA injury study. Br J Sports Med 45:553–558

    Article  CAS  PubMed  Google Scholar 

  • Fulco CS et al (1999) Slower fatigue and faster recovery of the adductor pollicis muscle in women matched for strength with men. Acta Physiol Scand 167:233–239

    Article  CAS  PubMed  Google Scholar 

  • Gollnick PD, Korge P, Karpakka J, Saltin B (1991) Elongation of skeletal muscle relaxation during exercise is linked to reduced calcium uptake by the sarcoplasmic reticulum in man. Acta Physiol Scand 142:135–136

    Article  CAS  PubMed  Google Scholar 

  • Grabiner MD, Owings TM (1999) Effects of eccentrically and concentrically induced unilateral fatigue on the involved and uninvolved limbs. J Electromyogr Kinesiol 9:185–189

    Article  CAS  PubMed  Google Scholar 

  • Hawkins RD, Fuller CW (1999) A prospective epidemiological study of injuries in four English professional football clubs. Br J Sports Med 33:196–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hickey J, Shield AJ, Williams MD, Opar DA (2014) The financial cost of hamstring strain injuries in the Australian Football League. Br J Sports Med 48:729–730

    Article  PubMed  Google Scholar 

  • Hill CA, Thompson MW, Ruell PA, Thom JM, White MJ (2001) Sarcoplasmic reticulum function and muscle contractile character following fatiguing exercise in humans. J Physiol 531:871–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter AM, Galloway SD, Smith IJ, Tallent J, Ditroilo M, Fairweather MM, Howatson G (2012) Assessment of eccentric exercise-induced muscle damage of the elbow flexors by tensiomyography. J Electromyogr Kinesiol 22:334–341

    Article  PubMed  Google Scholar 

  • Iguchi M, Shields RK (2010) Quadriceps low-frequency fatigue and muscle pain are contraction-type-dependent. Muscle Nerve 42:230–238

    Article  PubMed  PubMed Central  Google Scholar 

  • Junge A et al (2011) Countrywide campaign to prevent soccer injuries in Swiss amateur players. Am J Sports Med 39:57–63

    Article  PubMed  Google Scholar 

  • Keeton RB, Binder-Macleod SA (2006) Low-frequency fatigue. Phys Ther 86:1146–1150

    PubMed  Google Scholar 

  • Krizaj D, Simunic B, Zagar T (2008) Short-term repeatability of parameters extracted from radial displacement of muscle belly. J Electromyogr Kinesiol 18:645–651

    Article  PubMed  Google Scholar 

  • Mair SD, Seaber AV, Glisson RR, Garrett WE Jr (1996) The role of fatigue in susceptibility to acute muscle strain injury. Am J Sports Med 24:137–143

    Article  CAS  PubMed  Google Scholar 

  • McAndrew DJ, Rosser NAD, Brown JMM (2006) Mechanomyographic measures of muscle contractile properties are influenced by the duration of the stimulatory pulse. J Appl Res 6:142–152

    Google Scholar 

  • Newham DJ, Mills KR, Quigley BM, Edwards RH (1983) Pain and fatigue after concentric and eccentric muscle contractions. Clin Sci 64:55–62

    Article  CAS  PubMed  Google Scholar 

  • Oliveira AS, Goncalves M (2008) Neuromuscular recovery of the biceps brachii muscle after resistance exercise. Res Sports Med 16:244–256

    Article  PubMed  Google Scholar 

  • Orizio C, Diemont B, Esposito F, Esposito E, Parrinello G, Moglia A, Veicsteinas A (1999) Surface mechanomyogram reflects the changes in the mechanical properties of muscle at fatigue. Eur J Appl Physiol Occup Physiol 80:276–284

    Article  CAS  PubMed  Google Scholar 

  • Ottenheijm CAC et al (2008) Sarcoplasmic reticulum calcium uptake and speed of relaxation are depressed in nebulin-free skeletal muscle. FASEB J 22:2912–2919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peixoto LR, da Rocha AF, de Carvalho JL, Goncalves CA (2010) Electromyographic evaluation of muscle recovery after isometric fatigue. Conf Proc IEEE Eng Med Biol Soc 2010:4922–4925

    PubMed  Google Scholar 

  • Perotto AO (2011) Anatomical guide for the electromyographer: limbs and trunk, 5th edn. Charles C. Thomas, Illinois

    Google Scholar 

  • Place NN (2007) Assessment of the reliability of central and peripheral fatigue after sustained maximal voluntary contraction of the quadriceps muscle. Muscle Nerve 35:486–495

    Article  PubMed  Google Scholar 

  • Regueme SC, Barthelemy J, Nicol C (2007) Exhaustive stretch-shortening cycle exercise: no contralateral effects on muscle activity in maximal motor performances. Scand J Med Sci Spor 17:547–555

    Article  CAS  Google Scholar 

  • Small K, McNaughton L, Greig M, Lovell R (2010) The effects of multidirectional soccer-specific fatigue on markers of hamstring injury risk. J Sci Med Sport 13:120–125

    Article  CAS  PubMed  Google Scholar 

  • Tarata MT (2003) Mechanomyography versus electromyography, in monitoring the muscular fatigue. Biomed Eng Online 2:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Tokunaga T (1989) Muscle fiber conduction velocity and frequency parameters of surface EMG during fatigue of the human masseter muscle. 2. Frequency parameters. Nihon Hotetsu Shika Gakkai Zasshi 33:804–817

    Article  CAS  PubMed  Google Scholar 

  • Tosovic D, Seidl L, Ghebremedhin E, Brown MJ (2015) Determining minimal stimulus intensity for mechanomyographic analysis. J Electromyogr Kinesiol 25:749–753

    Article  PubMed  Google Scholar 

  • Viitasalo JH, Komi PV (1977) Signal characteristics of EMG during fatigue. Eur J Appl Physiol Occup Phys 37:111–121

    Article  CAS  Google Scholar 

  • Vøllestad NKN (1997) Measurement of human muscle fatigue. J Neurosci Meth 74:219

    Article  Google Scholar 

  • Walsh LD, Hesse CW, Morgan DL, Proske U (2004) Human forearm position sense after fatigue of elbow flexor muscles. J Physiol 558:705–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westerblad H, Allen DG (1991) Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers. J Gen Physiol 98:615–635

    Article  CAS  PubMed  Google Scholar 

  • Westerblad H, Duty S, Allen DG (1993) Intracellular calcium concentration during low-frequency fatigue in isolated single fibers of mouse skeletal muscle. J Appl Physiol 75:382–388

    CAS  PubMed  Google Scholar 

  • Woods C, Hawkins R, Maltby S, Hulse M, Thomas A, Hodson A (2004) The Football Association Medical Research Programme: an audit of injuries in professional football—analysis of hamstring injuries. Br J Sports Med 38:36–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshitake Y, Ue H, Miyazaki M, Moritani T (2001) Assessment of lower-back muscle fatigue using electromyography, mechanomyography, and near-infrared spectroscopy. Eur J Appl Physiol 84:174–179

    Article  CAS  PubMed  Google Scholar 

  • Zijdewind I, Zwarts MJ, Kernell D (1998) Influence of a voluntary fatigue test on the contralateral homologous muscle in humans? Neurosci Lett 253:41–44

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank each of the participants for their commitment to completing this study, as well as Associate Professor Rod Green for reading through the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Tosovic.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Nicolas Place.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tosovic, D., Than, C. & Brown, J.M.M. The effects of accumulated muscle fatigue on the mechanomyographic waveform: implications for injury prediction. Eur J Appl Physiol 116, 1485–1494 (2016). https://doi.org/10.1007/s00421-016-3398-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-016-3398-7

Keywords

Navigation