Skip to main content
Log in

Low-load resistance training promotes muscular adaptation regardless of vascular occlusion, load, or volume

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

This study investigates the impact of two different intensities and different volumes of low-load resistance training (LLRT) with and without blood flow restriction on the adaptation of muscle strength and size.

Methods

The sample was divided into five groups: one set of 20 % of one repetition maximum (1RM), three sets of 20 % of 1RM, one set of 50 % of 1RM, three sets of 50 % of 1RM, or control. LLRT was performed with (OC) or without (NOC) vascular occlusion, which was selected randomly for each subject. The maximal muscle strength (leg extension; 1RM) and the cross-sectional area (quadriceps; CSA) were assessed at baseline and after 8 weeks of LLRT.

Results

1RM performance was increased in both groups after 8 weeks of training: OC (1 × 50 % = 20.6 %; 3 × 50 % = 20.9 %; 1 × 20 % = 26.6 %; 3 × 20 % = 21.6 %) and NOC (1 × 50 % = 18.6 %; 3 × 50 % = 26.8 %; 1 × 20 % = 18.5 %; 3 × 20 % = 21.6 %; 3 × 20 % = 24.7 %) compared with the control group (−1.7 %). Additionally, the CSA was increased in both groups: OC (1 × 50 % = 2.4 %; 3 × 50 % = 3.8 %; 1 × 20 % = 4.6 %; 3 × 20 % = 4.8 %) and NOC (1 × 50 % = 2.4 %; 3 × 50 % = 1.5 %; 1 × 20 % = 4.3 %; 3 × 20 % = 3.8 %) compared with the control group (−0.7 %). There were no significant differences between the OC and NOC groups.

Conclusion

We conclude that 8 weeks of LLRT until failure in novice young lifters, regardless of occlusion, load or volume, produces similar magnitudes of muscular hypertrophy and strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

1RM:

One repetition maximum

95 % CI:

95 % confidence intervals

CSA:

Cross-sectional area

ES:

Effect size

LLRT:

Low-load resistance training

OC:

LLRT with blood flow restriction

NOC:

LLRT without blood flow restriction performed until volitional fatigue

MRI:

Magnetic resonance imaging

NOC:

Non-occlusion

OC:

Occlusion

RT:

Resistance training

SCSA:

Six cross-sectional area images summed

References

  • Abe T, Loenneke JP, Fahs CA, Rossow LM, Thiebaud RS, Bemben MG (2012) Exercise intensity and muscle hypertrophy in blood flow-restricted limbs and non-restricted muscles: a brief review. Clin Physiol Funct Imaging 32(4):247–252. doi:10.1111/j.1475-097X.2012.01126.x

    Article  CAS  PubMed  Google Scholar 

  • ACSM (2009) American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 41(3):687–708. doi:10.1249/MSS.0b013e3181915670

    Article  Google Scholar 

  • Burd NA, Holwerda AM, Selby KC, West DW, Staples AW, Cain NE, Cashaback JG, Potvin JR, Baker SK, Phillips SM (2010a) Resistance exercise volume affects myofibrillar protein synthesis and anabolic signalling molecule phosphorylation in young men. J Physiol 588(Pt 16):3119–3130. doi:10.1113//jphysiol.2010.192856 (jphysiol.2010.192856 [pii])

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burd NA, West DW, Staples AW, Atherton PJ, Baker JM, Moore DR, Holwerda AM, Parise G, Rennie MJ, Baker SK, Phillips SM (2010b) Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS One 5(8):e12033. doi:10.1371/journal.pone.0012033

    Article  PubMed Central  PubMed  Google Scholar 

  • Burd NA, Mitchell CJ, Churchward-Venne TA, Phillips SM (2012) Bigger weights may not beget bigger muscles: evidence from acute muscle protein synthetic responses after resistance exercise. Appl Physiol Nutr Metab 37(3):551–554. doi:10.1139/h2012-022

    Article  CAS  PubMed  Google Scholar 

  • Cook CJ, Kilduff LP, Beaven CM (2014) Improving strength and power in trained athletes with 3 weeks of occlusion training. Int J Sports Physiol Perform 9(1):166–172. doi:10.1123/ijspp.2013-0018 (2013-0018 [pii])

    Article  PubMed  Google Scholar 

  • Fallentin N, Jorgensen K, Simonsen EB (1993) Motor unit recruitment during prolonged isometric contractions. Eur J Appl Physiol Occup Physiol 67(4):335–341

    Article  CAS  PubMed  Google Scholar 

  • Fritz CO, Morris PE, Richler JJ (2012) Effect size estimates: current use, calculations, and interpretation. J Exp Psychol Gen 141(1):2

    Article  PubMed  Google Scholar 

  • Gonzalez-Badillo JJ, Izquierdo M, Gorostiaga EM (2006) Moderate volume of high relative training intensity produces greater strength gains compared with low and high volumes in competitive weightlifters. J Strength Cond Res 20(1):73–81. doi:10.1519/R-16284.1

    PubMed  Google Scholar 

  • Karabulut M, Abe T, Sato Y, Bemben MG (2010) The effects of low-intensity resistance training with vascular restriction on leg muscle strength in older men. Eur J Appl Physiol 108(1):147–155. doi:10.1007/s00421-009-1204-5

    Article  PubMed  Google Scholar 

  • Krustrup P, Soderlund K, Mohr M, Bangsbo J (2004a) The slow component of oxygen uptake during intense, sub-maximal exercise in man is associated with additional fibre recruitment. Pflugers Arch 447(6):855–866. doi:10.1007/s00424-003-1203-z

    Article  CAS  PubMed  Google Scholar 

  • Krustrup P, Soderlund K, Mohr M, Gonzalez-Alonso J, Bangsbo J (2004b) Recruitment of fibre types and quadriceps muscle portions during repeated, intense knee-extensor exercise in humans. Pflugers Arch 449(1):56–65. doi:10.1007/s00424-004-1304-3

    Article  CAS  PubMed  Google Scholar 

  • Krustrup P, Soderlund K, Relu MU, Ferguson RA, Bangsbo J (2009) Heterogeneous recruitment of quadriceps muscle portions and fibre types during moderate intensity knee-extensor exercise: effect of thigh occlusion. Scand J Med Sci Sports 19(4):576–584. doi:10.1111/j.1600-0838.2008.00801.x (SMS801 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Kubo K, Komuro T, Ishiguro N, Tsunoda N, Sato Y, Ishii N, Kanehisa H, Fukunaga T (2006) Effects of low-load resistance training with vascular occlusion on the mechanical properties of muscle and tendon. J Appl Biomech 22(2):112–119

    PubMed  Google Scholar 

  • Laurentino GC, Ugrinowitsch C, Roschel H, Aoki MS, Soares AG, Neves M Jr, Aihara AY, Fernandes Ada R, Tricoli V (2012) Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc 44(3):406–412. doi:10.1249/MSS.0b013e318233b4bc

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Carroll TJ (2007) Cross education: possible mechanisms for the contralateral effects of unilateral resistance training. Sports Med 37(1):1–14

    Article  PubMed  Google Scholar 

  • Loenneke JP, Fahs CA, Wilson JM, Bemben MG (2011) Blood flow restriction: the metabolite/volume threshold theory. Med Hypotheses 77(5):748–752. doi:10.1016/j.mehy.2011.07.029

    Article  CAS  PubMed  Google Scholar 

  • Loenneke JP, Wilson JM, Marin PJ, Zourdos MC, Bemben MG (2012) Low intensity blood flow restriction training: a meta-analysis. Eur J Appl Physiol 112(5):1849–1859. doi:10.1007/s00421-011-2167-x

    Article  PubMed  Google Scholar 

  • Madarame H, Neya M, Ochi E, Nakazato K, Sato Y, Ishii N (2008) Cross-transfer effects of resistance training with blood flow restriction. Med Sci Sports Exerc 40(2):258–263. doi:10.1249/mss.0b013e31815c6d7e

    Article  PubMed  Google Scholar 

  • Manimmanakorn A, Hamlin MJ, Ross JJ, Taylor R, Manimmanakorn N (2013a) Effects of low-load resistance training combined with blood flow restriction or hypoxia on muscle function and performance in netball athletes. J Sci Med Sport 16(4):337–342. doi:10.1016/j.jsams.2012.08.009 (S1440-2440(12)00183-1 [pii])

    Article  PubMed  Google Scholar 

  • Manimmanakorn A, Manimmanakorn N, Taylor R, Draper N, Billaut F, Shearman JP, Hamlin MJ (2013b) Effects of resistance training combined with vascular occlusion or hypoxia on neuromuscular function in athletes. Eur J Appl Physiol 113(7):1767–1774. doi:10.1007/s00421-013-2605-z

    Article  PubMed  Google Scholar 

  • Manini TM, Clark BC (2009) Blood flow restricted exercise and skeletal muscle health. Exerc Sport Sci Rev 37(2):78–85. doi:10.1097/JES.0b013e31819c2e5c (00003677-200904000-00006 [pii])

    Article  PubMed  Google Scholar 

  • Martin-Hernandez J, Marin PJ, Menendez H, Ferrero C, Loenneke JP, Herrero AJ (2013) Muscular adaptations after two different volumes of blood flow-restricted training. Scand J Med Sci Sports 23(2):e114–e120. doi:10.1111/sms.12036

    Article  CAS  PubMed  Google Scholar 

  • Mitchell CJ, Churchward-Venne TA, West DW, Burd NA, Breen L, Baker SK, Phillips SM (2012) Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol (1985) 113(1):71–77. doi:10.1152/japplphysiol.00307.2012

    Article  CAS  PubMed Central  Google Scholar 

  • Scott BR, Loenneke JP, Slattery KM, Dascombe BJ (2014) Exercise with blood flow restriction: an updated evidence-based approach for enhanced muscular development. Sports Med. doi:10.1007/s40279-014-0288-1

    Google Scholar 

  • Takarada Y, Sato Y, Ishii N (2002) Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur J Appl Physiol 86(4):308–314

    Article  PubMed  Google Scholar 

  • Takarada Y, Tsuruta T, Ishii N (2004) Cooperative effects of exercise and occlusive stimuli on muscular function in low-intensity resistance exercise with moderate vascular occlusion. Jpn J Physiol 54(6):585–592

    Article  PubMed  Google Scholar 

  • Wernbom M, Augustsson J, Raastad T (2008) Ischemic strength training: a low-load alternative to heavy resistance exercise? Scand J Med Sci Sports 18(4):401–416. doi:10.1111/j.1600-0838.2008.00788.x

    Article  CAS  PubMed  Google Scholar 

  • Wernbom M, Apro W, Paulsen G, Nilsen TS, Blomstrand E, Raastad T (2013) Acute low-load resistance exercise with and without blood flow restriction increased protein signalling and number of satellite cells in human skeletal muscle. Eur J Appl Physiol 113(12):2953–2965. doi:10.1007/s00421-013-2733-5

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka T, Farley RS, Caputo JL (2012) Occlusion training increases muscular strength in division IA football players. J Strength Cond Res 26(9):2523–2529. doi:10.1519/JSC.0b013e31823f2b0e

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This investigation was supported by Fundação de Amparo à Pesquisa do estado de Minas Gerais—FAPEMIG and by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio Lera Orsatti.

Additional information

Communicated by William J. Kraemer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barcelos, L.C., Nunes, P.R.P., de Souza, L.R.M.F. et al. Low-load resistance training promotes muscular adaptation regardless of vascular occlusion, load, or volume. Eur J Appl Physiol 115, 1559–1568 (2015). https://doi.org/10.1007/s00421-015-3141-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-015-3141-9

Keywords

Navigation