Skip to main content
Log in

Improved tolerance of peripheral fatigue by the central nervous system after endurance training

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

The purposes of this study were to evaluate the effect of endurance training on central fatigue development and recovery.

Methods

A control group was compared to a training group, which followed an 8-week endurance-training program, consisting in low-force concentric and isometric contractions. Before (PRE) and after (POST) the training period, neuromuscular function of the knee extensor (KE) muscles was evaluated before, immediately after and during 33 min after an exhausting submaximal isometric task at 15 % of the maximal voluntary contraction (MVC) force. After training, the trained group performed another test at iso-time, i.e., with the task maintained until the duration completed before training was matched (POST2). The evaluation of neuromuscular function consisted in the determination of the voluntary activation level during MVCs, from peripheral nerve electrical (VAPNS) and transcranial magnetic stimulations (VATMS). The amplitude of the potentiated twitch (Pt), the evoked [motor evoked potentials, cortical silent period (CSP)] and voluntary EMG activities were also recorded on the KE muscles.

Results

Before training, the isometric task induced significant reductions of VAPNS, VATMS and Pt, and an increased CSP. The training period induced a threefold increase of exercise duration, delayed central fatigue appearance, as illustrated by the absence of modification of VAPNS, VATMS and CSP after POST2. At POST, central fatigue magnitude and recovery were not modified but Pt reduction was greater.

Conclusion

These results suggest that central fatigue partially adapts to endurance training. This adaptation principally translates into improved tolerance of peripheral fatigue by the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Ag:

Silver

AgCl:

Silver chloride

ANOVA:

Analysis of variance

BF:

Biceps femoris

CSP:

Cortical silent period

EMG:

Electromyography

KE muscles:

Knee extensor muscles

Mmax :

Maximal muscle compound action potential

M-wave:

Muscle compound action potential

MEP:

Motor evoked potential

MEP·M −1max :

Normalized motor evoked potential

MVC:

Maximal voluntary contraction

PNS:

Peripheral nerve stimulation

PRE:

Before training

PRE EX:

Measurement before exercise

POST:

After training

POST2:

After training; denotes the exercise with a duration equal to the exercise conducted at PRE

POST EX:

Measurement after exercise

Pt:

Amplitude of the potentiated twitch

RF:

Rectus femoris

RM:

Maximal repetition

RMS:

Root mean square

RMS·M −1max :

Normalized voluntary EMG activity

RPE:

Rating of perceived exertion

TMS:

Transcranial magnetic stimulation

VAPNS :

Voluntary activation level measured from peripheral nerve stimulation

VATMS :

Voluntary activation level measured from transcranial magnetic stimulation

VL:

Vastus lateralis

VM:

Vastus medialis

References

  • Amann M, Dempsey JA (2008) Locomotor muscle fatigue modifies central motor drive in healthy humans and imposes a limitation to exercise performance. J Physiol 586(1):161–173. doi:10.1113/jphysiol.2007.141838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Amann M, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA (2009) Opioid-mediated muscle afferents inhibit central motor drive and limit peripheral muscle fatigue development in humans. J Physiol 587(Pt 1):271–283. doi:10.1113/jphysiol.2008.163303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Amann M, Blain GM, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA (2011) Implications of group III and IV muscle afferents for high-intensity endurance exercise performance in humans. J Physiol 589(Pt 21):5299–5309. doi:10.1113/jphysiol.2011.213769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bigland-Ritchie B, Johansson R, Lippold OC, Woods JJ (1983) Contractile speed and EMG changes during fatigue of sustained maximal voluntary contractions. J Neurophysiol 50(1):313–324

    CAS  PubMed  Google Scholar 

  • Blangsted AK, Sjogaard G, Madeleine P, Olsen HB, Sogaard K (2005) Voluntary low-force contraction elicits prolonged low-frequency fatigue and changes in surface electromyography and mechanomyography. J Electromyogr Kinesiol 15(2):138–148. doi:10.1016/j.jelekin.2004.10.004

    Article  PubMed  Google Scholar 

  • Borg G (1998) Perceived exertion and pain rating scales. Human Kinetics, Champaign

    Google Scholar 

  • Bosquet L, Montpetit J, Arvisais D, Mujika I (2007) Effects of tapering on performance: a meta-analysis. Med Sci Sports Exerc 39(8):1358–1365. doi:10.1249/mss.0b013e31806010e0

    Article  PubMed  Google Scholar 

  • Burke D (2002) Effects of activity on axonal excitability: implications for motor control studies. Adv Exp Med Biol 508:33–37

    PubMed  Google Scholar 

  • Damron LA, Dearth DJ, Hoffman RL, Clark BC (2008) Quantification of the corticospinal silent period evoked via transcranial magnetic stimulation. J Neurosci Methods 173(1):121–128. doi:10.1016/j.jneumeth.2008.06.001

    Article  PubMed  Google Scholar 

  • Enoka RM, Stuart DG (1992) Neurobiology of muscle fatigue. J Appl Physiol 72(5):1631–1648

    CAS  PubMed  Google Scholar 

  • Goodall S, Gonzalez-Alonso J, Ali L, Ross EZ, Romer LM (2012) Supraspinal fatigue after normoxic and hypoxic exercise in humans. J Physiol 590(Pt 11):2767–2782. doi:10.1113/jphysiol.2012.228890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gruet M, Temesi J, Rupp T, Levy P, Millet GY, Verges S (2013) Stimulation of the motor cortex and corticospinal tract to assess human muscle fatigue. Neuroscience 231:384–399. doi:10.1016/j.neuroscience.2012.10.058

    Article  CAS  PubMed  Google Scholar 

  • Hermens HJ, Freriks B, Merletti R, Hagg G, Stegeman D, Blok J, Rau G, Disselhorst-Klug C (1999) SENIAM 8: European recommendations for surface electromyography. Roessingh Research and Development, Enschede

    Google Scholar 

  • Holloszy JO, Coyle EF (1984) Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol Respir Environ Exerc Physiol 56(4):831–838

    CAS  PubMed  Google Scholar 

  • Jones DA (1996) High-and low-frequency fatigue revisited. Acta Physiol Scand 156(3):265–270

    Article  CAS  PubMed  Google Scholar 

  • Jubeau M, Zory R, Gondin J, Martin A, Maffiuletti NA (2007) Effect of electrostimulation training-detraining on neuromuscular fatigue mechanisms. Neurosci Lett 424(1):41–46. doi:10.1016/j.neulet.2007.07.018

    Article  CAS  PubMed  Google Scholar 

  • Kalmar JM, Cafarelli E (2004) Central fatigue and transcranial magnetic stimulation: effect of caffeine and the confound of peripheral transmission failure. J Neurosci Methods 138(1–2):15–26. doi:10.1016/j.jneumeth.2004.03.006

    Article  CAS  PubMed  Google Scholar 

  • Kaufman MP, Hayes SG, Adreani CM, Pickar JG (2002) Discharge properties of group III and IV muscle afferents. Adv Exp Med Biol 508:25–32

    PubMed  Google Scholar 

  • Lattier G, Millet GY, Martin A, Martin V (2004) Fatigue and recovery after high-intensity exercise. Part II: recovery interventions. Int J Sports Med 25(7):509–515. doi:10.1055/s-2004-820946

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Gandevia SC, Carroll TJ (2009) Unilateral strength training increases voluntary activation of the opposite untrained limb. Clin Neurophysiol 120(4):802–808. doi:10.1016/j.clinph.2009.01.002

    Article  PubMed  Google Scholar 

  • Li JL, Wang XN, Fraser SF, Carey MF, Wrigley TV, McKenna MJ (2002) Effects of fatigue and training on sarcoplasmic reticulum Ca(2 +) regulation in human skeletal muscle. J Appl Physiol 92(3):912–922. doi:10.1152/japplphysiol.00643.2000

    Article  CAS  PubMed  Google Scholar 

  • Martin V, Millet GY, Martin A, Deley G, Lattier G (2004) Assessment of low-frequency fatigue with two methods of electrical stimulation. J Appl Physiol 97(5):1923–1929. doi:10.1152/japplphysiol.00376.2004

    Article  CAS  PubMed  Google Scholar 

  • Martin V, Kerherve H, Messonnier LA, Banfi JC, Geyssant A, Bonnefoy R, Feasson L, Millet GY (2010) Central and peripheral contributions to neuromuscular fatigue induced by a 24-h treadmill run. J Appl Physiol 108(5):1224–1233. doi:10.1152/japplphysiol.01202.2009

    Article  PubMed  Google Scholar 

  • Mathis J, de Quervain D, Hess CW (1998) Dependence of the transcranially induced silent period on the ‘instruction set’ and the individual reaction time. Electroencephalogr Clin Neurophysiol 109(5):426–435

    Article  CAS  PubMed  Google Scholar 

  • Merletti R (1999) Standards for reporting EMG data. J Electromyogr Kinesiol 9(1):3–4

    Google Scholar 

  • Merletti R, Botter A, Troiano A, Merlo E, Minetto MA (2009) Technology and instrumentation for detection and conditioning of the surface electromyographic signal: state of the art. Clin Biomech 24(2):122–134. doi:10.1016/j.clinbiomech.2008.08.006

    Article  Google Scholar 

  • Merton PA (1954) Voluntary strength and fatigue. J Physiol 123(3):553–564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Michaut A, Babault N, Pousson M (2004) Specific effects of eccentric training on muscular fatigability. Int J Sports Med 25(4):278–283

    Article  CAS  PubMed  Google Scholar 

  • Millet GY (2011) Can neuromuscular fatigue explain running strategies and performance in ultra-marathons?: the flush model. Sports Med 41(6):489–506. doi:10.2165/11588760-000000000-00000

    Article  PubMed  Google Scholar 

  • Millet GY, Martin V, Lattier G, Ballay Y (2003) Mechanisms contributing to knee extensor strength loss after prolonged running exercise. J Appl Physiol 94(1):193–198. doi:10.1152/japplphysiol.00600.2002

    Article  CAS  PubMed  Google Scholar 

  • Noakes TD, St Clair Gibson A, Lambert EV (2005) From catastrophe to complexity: a novel model of integrative central neural regulation of effort and fatigue during exercise in humans: summary and conclusions. Br J Sports Med 39(2):120–124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rupp T, Jubeau M, Wuyam B, Perrey S, Levy P, Millet GY, Verges S (2012) Time-dependent effect of acute hypoxia on corticospinal excitability in healthy humans. J Neurophysiol 108(5):1270–1277. doi:10.1152/jn.01162.2011

    Article  CAS  PubMed  Google Scholar 

  • Sidhu SK, Bentley DJ, Carroll TJ (2009a) Cortical voluntary activation of the human knee extensors can be reliably estimated using transcranial magnetic stimulation. Muscle Nerve 39(2):186–196. doi:10.1002/mus.21064

    Article  PubMed  Google Scholar 

  • Sidhu SK, Bentley DJ, Carroll TJ (2009b) Locomotor exercise induces long-lasting impairments in the capacity of the human motor cortex to voluntarily activate knee extensor muscles. J Appl Physiol 106(2):556–565. doi:10.1152/japplphysiol.90911.2008

    Article  PubMed  Google Scholar 

  • Sinoway LI (1996) Neural responses to exercise in humans: implications for congestive heart failure. Clin Exp Pharmacol Physiol 23(8):693–699

    Article  CAS  PubMed  Google Scholar 

  • Sinoway LI, Rea RF, Smith M, Mark AL (1989) Physical training induces desensitisation of muscle metaboreflex. Circ 80 (Suppl. II):290

  • Skurvydas A, Dudoniene V, Kalvenas A, Zuoza A (2002) Skeletal muscle fatigue in long-distance runners, sprinters and untrained men after repeated drop jumps performed at maximal intensity. Scand J Med Sci Sports 12(1):34–39

    Article  CAS  PubMed  Google Scholar 

  • Sogaard K, Gandevia SC, Todd G, Petersen NT, Taylor JL (2006) The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles. J Physiol 573(Pt 2):511–523. doi:10.1113/jphysiol.2005.103598

    Article  PubMed Central  PubMed  Google Scholar 

  • Taylor JL, Gandevia SC (2008) A comparison of central aspects of fatigue in submaximal and maximal voluntary contractions. J Appl Physiol 104(2):542–550. doi:10.1152/japplphysiol.01053.2007

    Article  PubMed  Google Scholar 

  • Todd G, Taylor JL, Gandevia SC (2003) Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation. J Physiol 551(Pt 2):661–671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Todd G, Taylor JL, Gandevia SC (2004) Reproducible measurement of voluntary activation of human elbow flexors with motor cortical stimulation. J Appl Physiol 97(1):236–242

    Article  PubMed  Google Scholar 

  • Triscott S, Gordon J, Kuppuswamy A, King N, Davey N, Ellaway P (2008) Differential effects of endurance and resistance training on central fatigue. J Sports Sci 26(9):941–951. doi:10.1080/02640410701885439

    Article  PubMed  Google Scholar 

  • Ugawa Y, Terao Y, Hanajima R, Sakai K, Kanazawa I (1995) Facilitatory effect of tonic voluntary contraction on responses to motor cortex stimulation. Electroencephalogr Clin Neurophysiol 97:451–454

    Article  CAS  PubMed  Google Scholar 

  • Vila-Cha C, Falla D, Correia MV, Farina D (2012) Adjustments in motor unit properties during fatiguing contractions after training. Med Sci Sports Exerc 44(4):616–624

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Guillaume Y. Millet for his valuable comments during the preparation of the manuscript. No sources of funding were used to conduct this study or prepare this manuscript.

Conflict of interest

The authors have no conflicts of interest that are directly relevant to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Martin.

Additional information

Communicated by Toshio Moritani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zghal, F., Cottin, F., Kenoun, I. et al. Improved tolerance of peripheral fatigue by the central nervous system after endurance training. Eur J Appl Physiol 115, 1401–1415 (2015). https://doi.org/10.1007/s00421-015-3123-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-015-3123-y

Keywords

Navigation