Skip to main content
Log in

Acute respiratory muscle unloading by normoxic helium–O2 breathing reduces the O2 cost of cycling and perceived exertion in obese adolescents

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

In obesity, an increased work of breathing contributes to a higher O2 cost of exercise and negatively affects exercise tolerance. The purpose of the study was to determine whether, in obese adolescents, acute respiratory muscle unloading via normoxic helium–O2 breathing reduces the O2 cost of cycling and perceived exertion.

Methods

Nine males [age 16.8 ± 1.6 (x ± SD) years, body mass 109.9 ± 15.0 kg] performed on a cycle ergometer, breathing room air (AIR) or a 21 % O2–79 % helium mixture (He–O2): an incremental exercise, for determination of \( \mathop V\limits^{.} \)O2 peak and gas exchange threshold (GET); 12 min constant work rate (CWR) exercises at 70 % of GET (<GET) and 120 % of GET (>GET) determined in AIR.

Results

\( \mathop V\limits^{.} \)O2 peak was not different in the two conditions. From the 3rd to the 12th minute of exercise (both during CWR < GET and CWR > GET), \( \mathop V\limits^{.} \)O2 was lower in He–O2 vs. AIR (end-exercise values: 1.40 ± 0.14 vs. 1.57 ± 0.22 L min−1 <GET, and 2.23 ± 0.31 vs. 2.54 ± 0.27 L min−1 >GET). During CWR > GET in AIR, \( \mathop V\limits^{.} \)O2 linearly increased from the 3rd to the 12th minute of exercise, whereas no substantial increase was observed in He–O2. The O2 cost of cycling was ~10 % (<GET) and ~15 % (>GET) lower in He–O2 vs. AIR. Heart rate and ratings of perceived exertion for dyspnea/respiratory discomfort and leg effort were lower in He–O2.

Conclusions

In obese adolescents, acute respiratory muscle unloading via He–O2 breathing lowered the O2 cost of cycling and perceived exertion during submaximal moderate- and heavy-intensity exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AIR:

Ambient air

ANOVA:

Analysis of variance

BM:

Body mass

BMI:

Body mass index

COPD:

Chronic obstructive pulmonary disease

CWR:

Constant work rate

ECG:

Electrocardiography

FEV1 :

Forced expiratory volume in 1 s

FFM:

Fat-free mass

FM:

Fat mass

fR:

Respiratory frequency

FVC:

Forced vital capacity

GET:

Gas exchange threshold

He–O2 :

Helium (79 %)–oxygen (21 %) gas mixture

HR:

Heart rate

PEFR:

Peak expiratory flow rate

PET:

End-tidal partial pressure

RPE:

Ratings of perceived exertion

SD:

Standard deviation

SDS:

Standard deviation score

TI:

Time of inspiration

TI/TT:

Duty cycle of inspiration

TT:

Total time of inspiration and expiration

\( \mathop V\limits^{.} \)CO2 :

CO2 output

\( \mathop V\limits^{.} \)E:

Pulmonary ventilation

\( \mathop V\limits^{.} \)O2 :

O2 uptake

V T :

Tidal volume

References

  • Aliverti A, Quaranta M, Chakrabarti B, Albuquerque ALP, Calverley PM (2009) Paradoxical movement of the lower rib cage at rest and during exercise in COPD patients. Eur Resp J 33:49–60

    Article  CAS  Google Scholar 

  • Åstrand PO, Rodhal K, Dahl H, Strømme SB (2003) Textbook of work physiology. Physiological bases of exercise, 4th edn. Human Kinetics, Champaign

    Google Scholar 

  • Babb TG (1999) Mechanical ventilator constraints in aging, lung disease and obesity: perspectives and a brief review. Med Sci Sports Exerc 31(Suppl):S12–S22

    Article  CAS  PubMed  Google Scholar 

  • Babb TG, Ranasinghe KG, Comeau LA, Semon TL, Schwartz B (2008) Dyspnea on exertion in obese women: association with an increased oxygen cost of breathing. Am J Respir Crit Care Med 178:116–123

    Article  PubMed  Google Scholar 

  • Babcock MA, Pegelow DF, Harms CA, Dempsey JA (2002) Effects of respiratory muscle unloading on exercise-induced diaphragm fatigue. J Appl Physiol 93:201–206

    PubMed  Google Scholar 

  • Beaver WL, Wasserman K, Whipp BJ (1986) A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 60:2020–2027

    CAS  PubMed  Google Scholar 

  • Bernhardt V, Wood HE, Moran RB, Babb TG (2013) Dyspnea on exertion in obese men. Respir Physiol Neurobiol 185:241–248

    Article  PubMed Central  PubMed  Google Scholar 

  • Borg G (1998) Borg’s perceived exertion and pain scales. Human Kinetics, Champaign

    Google Scholar 

  • Brice AG, Welch HG (1983) Metabolic and cardiorespiratory responses to He–O2 breathing during exercise. J Appl Physiol 54:387–392

    CAS  PubMed  Google Scholar 

  • Cacciari E, Milani S, Balsamo A, Spada E, Bona G, Cavallo L, Cerutti F, Gargantini L, Greggio N, Tonini G, Cicognani A (2006) Italian cross-sectional growth charts for height, weight and BMI (2 to 20 year). J Endocrinol Invest 29:581–593

    Article  CAS  PubMed  Google Scholar 

  • Carra J, Candau R, Keslacy S, Giolbas F, Borrani F, Millet GP, Varray A, Ramonatxo M (2003) Addition of inspiratory resistance increases the amplitude of the slow component of O2 uptake kinetics. J Appl Physiol 94:2448–2455

    CAS  PubMed  Google Scholar 

  • Chiappa GR, Queiroga F Jr, Meda E, Ferreira LF, Diefenthaeler F, Nunes M, Vaz MA, Machado MC, Nery LE, Neder JA (2009) Heliox improves oxygen delivery and utilization during dynamic exercise in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 179:1004–1010

    Article  PubMed  Google Scholar 

  • Chlif M, Keochkerian D, Feki Y, Vaidie A, Choquet D, Ahmadi S (2007) Inspiratory muscle activity during incremental exercise in obese men. Int J Ob 31:1456–1463

    Article  CAS  Google Scholar 

  • Cleland SM, Murias JM, Kowalchuck JM, Paterson DH (2012) Effects of prior heavy-intensity exercise on oxygen uptake and muscle deoxygenation kinetics of a subsequent heavy-intensity cycling and knee-extension exercise. Appl Physiol Nutr Metab 37:138–148

    Article  CAS  PubMed  Google Scholar 

  • Coast JR, Rasmussen SA, Krause KM, O’Kroy JA, Loy RA, Rhodes J (1993) Ventilatory work and oxygen consumption during exercise and hyperventilation. J Appl Physiol 74:793–798

    CAS  PubMed  Google Scholar 

  • Cole TJ, Freeman JV, Preece MA (1998) British 1990 growth reference centiles for weight, height, body mass index and head circumference fitted by maximum penalized likelihood. Stat Med 17:407–429

    Article  CAS  PubMed  Google Scholar 

  • Cross TJ, Morris NR, Haseler LJ, Schneider DA, Sabapathy S (2010a) The influence of breathing mechanics on the development of the slow component of O2 uptake. Respir Physiol Neurobiol 173:125–131

    Article  PubMed  Google Scholar 

  • Cross TJ, Sabapathy S, Schneider DA, Haseler LJ (2010b) Breathing He–O2 attenuates the slow component of O2 uptake kinetics during exercise performed above the respiratory compensation threshold. Exp Physiol 95:172–183

    Article  PubMed  Google Scholar 

  • Esposito F, Ferretti G (1997) The effects of breathing He–O2 mixtures on maximal oxygen consumption in normoxic and hypoxic men. J Physiol 503:215–221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gaesser GA, Poole DC (1996) The slow component of oxygen uptake kinetics in humans. Exerc Sport Sci Rev 24:35–71

    Article  CAS  PubMed  Google Scholar 

  • Gray DS, Bray GA, Gemayel N, Kaplan K (1989) Effects of obesity on bioelectrical impedance. Am J Clin Nutr 50:255–260

    CAS  PubMed  Google Scholar 

  • Guenette JA, Querido JS, Eves ND, Chua R, Sheel AW (2009) Sex differences in the resistive and elastic work of breathing during exercise in endurance-trained athletes. Am J Physiol Regul Integr Comp Physiol 297:R166–R175

    Article  CAS  PubMed  Google Scholar 

  • Harms CA, Babcock MA, McClaran SR, Pegelow DF, Nickele GA, Nelson WB, Dempsey JA (1997) Respiratory muscle work compromises leg blood flow during maximal exercise. J Appl Physiol 82:1573–1583

    CAS  PubMed  Google Scholar 

  • Hess DR, Fink JB, Venkataraman ST, Kim IK, Myers TR, Tano BD (2006) The history and physics of heliox. Respir Care 51:608–612

    PubMed  Google Scholar 

  • Hogan MC, Richardson RS, Haseler LJ (1999) Human muscle performance and PCr hydrolysis with varied inspired oxygen fractions: a 31P-MRS study. J Appl Physiol 86:1367–1373

    CAS  PubMed  Google Scholar 

  • Jones AM, Grassi B, Christensen PM, Krustrup P, Bangsbo J, Poole DC (2011) The slow component of \( \mathop V\limits^{.} \)O2 kinetics: mechanistic bases and practical applications. Med Sci Sports Exerc 43:2046–2062

    Article  PubMed  Google Scholar 

  • Knudson RJ, Lebowitz MD, Holberg J, Burrows B (1983) Changes in the normal maximal expiratory flow-volume curve with growth and aging. Am Rev Respir Dis 127:725–734

    CAS  PubMed  Google Scholar 

  • Lamarra N, Whipp BJ, Ward SA, Wasserman K (1987) Effect of interbreath fluctuations on characterizing exercise gas exchange kinetics. J Appl Physiol 62:2003–2012

    Article  CAS  PubMed  Google Scholar 

  • Lin CK, Lin CC (2012) Work of breathing and respiratory drive in obesity. Respirology 17:402–411

    Article  PubMed  Google Scholar 

  • Louvaris Z, Zakynthinos S, Aliverti A, Habazettl H, Vasilopolou M, Andrianopoulos V, Wagner H, Wagner PD, Vogiatzis I (2012) Heliox increases quadriceps muscle oxygen delivery during exercise in COPD patients with and without dynamic hyperinflation. J Appl Physiol 113:1012–1023

    Article  CAS  PubMed  Google Scholar 

  • Lukaski HC, Bolonchuk WW, Hall CB, Siders WA (1986) Validation of tetrapolar bioelectrical measurements to assess human body composition. J Appl Physiol 60:1327–1332

    CAS  PubMed  Google Scholar 

  • Mendelson M, Michallet A-S, Estève F, Perrin C, Levy P, Wuyam B, Flore P (2012) Ventilatory responses to exercise training in obese adolescents. Respir Physiol Neurobiol 184:73–79

    Article  PubMed  Google Scholar 

  • Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, Van Der Grinten CPM, Gustafsson P, Jensen R, MacIntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Viegi G, Wanger J (2005) Standardisation of spirometry. Eur Respir J 26:319–338

    Article  CAS  PubMed  Google Scholar 

  • Murphy TM, Clark WH, Buckingham IPB, Young WA (1969) Respiratory gas exchange in exercise during helium-oxygen breathing. J Appl Physiol 26:303–307

    CAS  PubMed  Google Scholar 

  • Ofir D, Laveneziana P, Webb KA, O’Donnell DE (2007) Ventilatory and perceptual responses to cycle exercise in obese women. J Appl Physiol 102:2217–2226

    Article  PubMed  Google Scholar 

  • Powers SK, Jacques M, Richard R, Beadle RE (1986) Effects of breathing a normoxic He–O2 gas mixture on exercise tolerance and \( \mathop V\limits^{.} \)O2 max. Int J Sports Med 7:217–221

    Article  CAS  PubMed  Google Scholar 

  • Romer LM, Lovering AT, Haverkamp HC, Pegelow DF, Dempsey JA (2006) Effect of inspiratory muscle work on peripheral fatigue of locomotor muscles in healthy humans. J Physiol 571:425–439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salvadego D, Lazzer S, Busti C, Galli R, Agosti F, Lafortuna C, Sartorio A, Grassi B (2010) Gas Exchange kinetics in obese adolescents. Inferences on exercise tolerance and prescription. Am J Physiol Regul Int Comp Physiol 299:R1298–R1305

    Article  CAS  Google Scholar 

  • Vogiatzis I, Habazettl H, Aliverti A, Athanasopoulos D, Louvaris Z, Lo Mauro A, Wagner H, Roussos C, Wagner PD, Zakynthinos S (2011) Effect of helium breathing on intercostal and quadriceps muscle blood flow during exercise in COPD patients. Am J Physiol Regul Integr Comp Physiol 300:1549–1559

    Article  Google Scholar 

  • Wasserman K, Whipp BJ (1975) Exercise physiology in health and disease. Am Rev Respir Dis 112:219–249

    CAS  PubMed  Google Scholar 

  • Wetter TJ, Harms CA, Nelson WB, Pegelow DF, Dempsey JA (1999) Influence of respiratory muscle work on \( \mathop V\limits^{.} \)O2 and leg blood flow during submaximal exercise. J Appl Physiol 87:643–651

    CAS  PubMed  Google Scholar 

  • Whipp BJ, Rossiter HB, Ward SA (2002) Exertional oxygen uptake kinetics: a stamen of stamina? Biochem Soc Trans 30:237–247

    Article  CAS  PubMed  Google Scholar 

  • Zoladz JA, Gladden LB, Hogan MC, Nieckarz Z, Grassi B (2008) Progressive recruitment of muscle fibers is not necessary for the slow component of \( \mathop V\limits^{.} \)̇O2 kinetics. J Appl Physiol 105:575–580

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support by Progetti di Ricerca Corrente, Italian Institute for Auxology, Milan is acknowledged.

Conflict of interest

No conflict of interest is reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Grassi.

Additional information

Communicated by David C. Poole.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salvadego, D., Sartorio, A., Agosti, F. et al. Acute respiratory muscle unloading by normoxic helium–O2 breathing reduces the O2 cost of cycling and perceived exertion in obese adolescents. Eur J Appl Physiol 115, 99–109 (2015). https://doi.org/10.1007/s00421-014-2993-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-2993-8

Keywords

Navigation